Answer:
69.79 mmHg is the pressure for the solution
Explanation:
Formula for vapor pressure lowering:
Vapor pressure of pure solvent(P°) - Vapor pressure of solution (P') = P° . Xm
Xm → Molar fraction of solute (moles of solute / Total moles)
Total moles = Moles of solute + Moles of solvent
Let's determine the moles:
50.36 g . 1mol/342 g = 0.147 moles of sugar
88.69 g. 1mol/ 18g = 4.93 moles of water
Total moles = 0.147 + 4.93 = 5.077 moles
Xm = 0.147 / 5.077 = 0.0289
If we replace data given in the formula:
71.88 mHg - P' = 71.88 mmHg . 0.0289 . 0.0289
P' = - (71.88 mmHg . 0.0289 - 71.88 mmHg)
P' = 69.79 mmHg
Answer:
No, It will mean lot of rains but not every day
Explanation:
In wet tropical climates, the high clouds trap a lot of heat while balancing incoming and outgoing heat energy. When the number of heat trapping cloud remains very low, then the unstable cool air above the clouds cause lot of rain.
Hence, there will rain frequently but no everyday
The time it took her to drive 2 km is 11.43 seconds, because sonverting kilometers to meters, it is 1000 meters to every kilometer, and she travels 2 kilometers, which is two-thousand meters. Then to find the time you need to divide the time by the speed, and with that you get 11.4285714286, or 11.43 seconds.
Answer:
CaCO₃(s) → CaO(s) + CO₂(g)
Explanation:
The decomposition reaction always make two compounds from one.
The products always have simpler chemical structure, originated from a determined compound. This can happens spontaneously or by a third party.
A notable example of decomposition is hydrolysis. As for example the case of water, which decomposes and generates oxygen and hydrogen gas
2H₂O (l) → 2 H₂ (g) + O₂ (g)
In this case, the calium carbonate decomposes into CaO and CO₂
These two, are the products of the decomposition.
Of course, the unique reactant is the Calcium Carbonate
The balanced equation is:
CaCO₃(s) → CaO(s) + CO₂(g)
Mutation affects can be different just with changes as small as the substitution of a single DNA building block or nucleotide base with another nucleotide base