#6).
Every 1,000 mL makes 1 L
How many 1,000mL are there in 2,800 mL ?
That's division.
(2,800 mL) / (1,000 mL) = <em>2.8 L</em>
#7).
The 'perimeter' means the 'distance all the way around'.
You have to know that both sides of a rectangle are the same length,
and also the top and bottom are the same length.
So the perimeter of this rectangle is
(2 yd) + (4.5 yd) + (2.yd) + (4.5 yd) = 13 yd .
Oops. The problem wants to know the perimeter in feet.
So you have to know that each yard is the same as 3 feet.
In order to find the number of feet in 13 yards, you have to
take 3 feet 13 <em><u>times</u></em> .
(3 feet) times (13) = <em>39 feet .</em>
#8).
For this one, you have to know that every 36 inches makes 1 yard.
How many 36 inches are there in 48 inches ?
That's division.
(48 inches) / (36inches) = <em>1 and 1/2 yards</em> .
#9).
For this problem, you have to know how to handle a mixed number,
and you also have to know that there are 16 ounces in 1 pound.
Add up the fruit:
(3-1/2 pounds) + (4 pounds) + 2 pounds) = <em><u>9-1/2 pounds</u></em>
Now, remember that each pound is the same as 16 ounces. So if you
want to find the number of ounces in 9-1/2 pounds, you have to take
16 ounces 9-1/2 times .
(16 ounces) times (9-1/2) = <em>152 ounces</em>.
___________________________________
#10).
This one is just adding up some numbers. But after you finish doing that, you have to know that 1,000 meters is called '1 kilometer' .
Add up the distances that Omar ran:
(1,000 meters) + (1,625 meters) + (1,500 meters) = <em><u>4,125 meters</u></em>
The problem wants to know how many kilometers this is, so you have to figure out how many '1,000 meters' fit into 4,125 meters.
That's division.
(4,125 meters) / (1,000 meters) = <em>4.125 kilometers</em>
214.0560
+ 9.3456
=223.4016
A random person put the answer for you
<span>Determine the root-mean-square sped of CO2 molecules that have an average Kinetic Energy of 4.21x10^-21 J per molecule. Write your answer to 3 sig figs.
</span><span>
E = 1/2 m v^2
If you substitute into this formula, you will get out the root-mean-square speed.
If energy is Joules, the mass should be in kg, and the speed will be in m/s.
1 mol of CO2 is 44.0 g, or 4.40 x 10^1 g or 4.40 x 10^-2 kg.
If you divide this by Avagadro's constant, you will get the average mass of a CO2 molecule.
4.40 x 10^-2 kg / 6.02 x 10^23 = 7.31 x 10^-26 kg
So, if E = 1/2 mv^2
</span>v^2 = 2E/m = 2 (4.21x10^-21 J)/7.31 x 10^-26 kg = 115184.68
Take the square root of that, and you get the answer 339 m/s.
When a solvent has as much of the dilute dissolved in it as possible, then it is saturated.
If you were to heat the water, its capacity would increase and would then be super-saturated because it has more dissolved in it than possible as room temp.
Since there is no heating being done, the water is just saturated.
Hope that helps!