I thank that your answer is C.
The reaction is of order three with respect to the reactant.
<h3>Explanation</h3>
The rate of a reaction of order n about a certain reactant is proportion to the concentration of that reactant raised to the n-th power. This is true only if concentrations of any other reactants stay constant in the whole process.
In other words, Rate = constant × [Reactant]ⁿ, Rate ∝ [Reactant]ⁿ. (The symbol "∝" reads "proportional to".)
In this question,
[4 × Reactant]ⁿ ÷ [Reactant]ⁿ = 64.
In other words, 4ⁿ = 64, where n is the order of the reaction with respect to this reactant.
It might take some guesswork to find the value of n. Alternatively, n can be solved directly with a calculator using logarithms. Taking natural log of both sides:
.
Evaluating
on Google or on a calculator with support for ln (the natural log) will give the value of n- no guesswork required.
n = 3. Therefore, the reaction is of order three with respect to this reactant.
It has mass and takes up space is correct.
Answer:
See explanation
Explanation:
Electron affinity is the energy released when an extra electron is added to a neutral gaseous atom. A negative value of electron affinity indicates that energy is given out and vice versa.
Metals have positive electron affinity since electrons rarely accept electrons, so;
Na(g)+ 1e^- → Na^-(g) positive
Mg(g)+1e^- → Mg^-(g) positive
For the last case; Br(g)+ 1e^- → Br^-(g), the electron affinity for the non-metals is negative. hence the answer