Answer:
The claim is valid.
Explanation:
Let assume that heat pump is reversible. The coefficient of performance for the heat pump is:



The claim is valid as real heat pumps have lower coefficients of performance.
Answer: a) 0.948 b) 117.5µf
Explanation:
Given the load, a total of 2.4kw and 0.8pf
V= 120V, 60 Hz
P= 2.4 kw, cos θ= 80
P= S sin θ - (p/cos θ) sin θ
= P tan θ(cos^-1 (0.8)
=2.4 tan(36.87)= 1.8KVAR
S= 2.4 + j1. 8KVA
1 load absorbs 1.5 kW at 0.707 pf lagging
P= 1.5 kW, cos θ= 0.707 and θ=45 degree
Q= Ptan θ= tan 45°
Q=P=1.5kw
S1= 1.5 +1.5j KVA
S1 + S2= S
2.4+j1.8= 1.5+1.5j + S2
S2= 0.9 + 0.3j KVA
S2= 0.949= 18.43 °
Pf= cos(18.43°) = 0.948
b.) pf to 0.9, a capacitor is needed.
Pf = 0.9
Cos θ= 0.9
θ= 25.84 °
(WC) V^2= P (tan θ1 - tan θ2)
C= 2400 ( tan (36. 87°) - tan (25.84°)) /2 πf × 120^2
f=60, π=22/7
C= 117.5µf
Answer:
Code is given below:
Explanation:
.data
str1: .space 20
str2: .space 20
msg1:.asciiz "Please enter string (max 20 characters): "
msg2: .asciiz "\n Please enter string (max 20 chars): "
msg3:.asciiz "\nSAME"
msg4:.asciiz "\nNOT SAME"
.text
.globl main
main:
li $v0,4 #loads msg1
la $a0,msg1
syscall
li $v0,8
la $a0,str1
addi $a1,$zero,20
syscall #got string to manipulate
li $v0,4 #loads msg2
la $a0,msg2
syscall
li $v0,8
la $a0,str2
addi $a1,$zero,20
syscall #got string
la $a0,str1 #pass address of str1
la $a1,str2 #pass address of str2
jal methodComp #call methodComp
beq $v0,$zero,ok #check result
li $v0,4
la $a0,msg4
syscall
j exit
ok:
li $v0,4
la $a0,msg3
syscall
exit:
li $v0,10
syscall
methodComp:
add $t0,$zero,$zero
add $t1,$zero,$a0
add $t2,$zero,$a1
loop:
lb $t3($t1) #load a byte from each string
lb $t4($t2)
beqz $t3,checkt2 #str1 end
beqz $t4,missmatch
slt $t5,$t3,$t4 #compare two bytes
bnez $t5,missmatch
addi $t1,$t1,1 #t1 points to the next byte of str1
addi $t2,$t2,1
j loop
missmatch:
addi $v0,$zero,1
j endfunction
checkt2:
bnez $t4,missmatch
add $v0,$zero,$zero
endfunction:
jr $ra
Answer:
1028.1184 Ohms
Explanation:
<u>Given the following data;</u>
- Initial resistance, Ro = 976 Ohms
- Initial temperature, T1 = 0°C
- Final temperature, T2 = 89°C
Assuming the temperature coefficient of resistance for carbon at 0°C is equal to 0.0006 per degree Celsius.
To find determine its new resistance, we would use the mathematical expression for linear resistivity;

Substituting into the equation, we have;




In poor weather, you should <u>double</u> your following distance.