1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimaraw [331]
3 years ago
12

In engineering, economic cost is a decision-making tangible factor. Group of answer choices True False

Engineering
2 answers:
salantis [7]3 years ago
8 0
Economic cost is a rescission making tangible factor true
polet [3.4K]3 years ago
6 0

Answer:

True

Explanation:

Economic cost is a very important factor to consider in decision making in Engineering. It is part of the four essential elements involved in decision making in engineering analysis.

Economic cost is part of the criteria to evaluate alternatives considering the time value of money by estimating a specific measure of worth of estimated commodity cost over a period of time.

Other Factors to consider in Engineering Economics as related to the Economy are:

(1) Time of Occurence of Cash flows

(2) Interest Rates

(3) Cash Flows

You might be interested in
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 278C, and 75
Inessa [10]

Answer:

(a). The value of temperature at the end of heat addition process            T_{3} = 2042.56 K

(b). The value of pressure at the end of heat addition process                    P_{3} = 1555.46 k pa

(c). The thermal efficiency of an Otto cycle   E_{otto} = 0.4478

(d). The value of mean effective pressure of the cycle P_{m} = 1506.41 \frac{k pa}{kg}

Explanation:

Compression ratio r_{p} = 8

Initial pressure P_{1} = 95 k pa

Initial temperature T_{1} = 278 °c = 551 K

Final pressure P_{2} = 8 × P_{1} = 8 × 95 = 760 k pa

Final temperature T_{2} = T_{1} × r_{p} ^{\frac{\gamma - 1}{\gamma} }

Final temperature T_{2} = 551 × 8 ^{\frac{1.4 - 1}{1.4} }

Final temperature T_{2} = 998 K

Heat transferred at constant volume Q = 750 \frac{KJ}{kg}

(a). We know that Heat transferred at constant volume Q_{S} = m C_{v} ( T_{3} - T_{2}  )

⇒ 1 × 0.718 × ( T_{3} - 998 ) = 750

⇒ T_{3} = 2042.56 K

This is the value of temperature at the end of heat addition process.

Since heat addition is constant volume process. so for that process pressure is directly proportional to the temperature.

⇒ P ∝ T

⇒ \frac{P_{3} }{P_{2} } = \frac{T_{3} }{T_{2} }

⇒ P_{3} = \frac{2042.56}{998} × 760

⇒ P_{3} = 1555.46 k pa

This is the value of pressure at the end of heat addition process.

(b). Heat rejected from the cycle Q_{R} = m C_{v} ( T_{4} - T_{1}  )

For the compression and expansion process,

⇒ \frac{T_{3} }{T_{2} } = \frac{T_{4} }{T_{1} }

⇒ \frac{2042.56}{998} = \frac{T_{4} }{551}

⇒ T_{4} = 1127.7 K

Heat rejected Q_{R} = 1 × 0.718 × ( 1127.7 - 551)

⇒ Q_{R} = 414.07 \frac{KJ}{kg}

Net heat interaction from the cycle Q_{net} = Q_{S} - Q_{R}

Put the values of Q_{S} & Q_{R}  we get,

⇒ Q_{net} = 750 - 414.07

⇒ Q_{net} = 335.93 \frac{KJ}{kg}

We know that for a cyclic process net heat interaction is equal to net work transfer.

⇒ Q_{net} = W_{net}

⇒ W_{net} = 335.93 \frac{KJ}{kg}

This is the net work output from the cycle.

(c). Thermal efficiency of an Otto cycle is given by

E_{otto} = 1- \frac{T_{1} }{T_{2} }

Put the values of T_{1} & T_{2} in the above formula we get,

E_{otto} = 1- \frac{551 }{998 }

⇒ E_{otto} = 0.4478

This is the thermal efficiency of an Otto cycle.

(d). Mean effective pressure P_{m} :-

We know that mean effective pressure of  the Otto cycle is  given by

P_{m} = \frac{W_{net} }{V_{s} } ---------- (1)

where V_{s} is the swept volume.

V_{s} = V_{1}  - V_{2} ---------- ( 2 )

From ideal gas equation P_{1} V_{1} = m × R × T_{1}

Put all the values in above formula we get,

⇒ 95 × V_{1} = 1 × 0.287 × 551

⇒ V_{1} = 0.6 m^{3}

From the same ideal gas equation

P_{2} V_{2} = m × R × T_{2}

⇒ 760 × V_{2} = 1 × 0.287 × 998

⇒ V_{2} = 0.377 m^{3}

Thus swept volume V_{s} = 0.6 - 0.377

⇒ V_{s} = 0.223 m^{3}

Thus from equation 1 the mean effective pressure

⇒ P_{m} = \frac{335.93}{0.223}

⇒ P_{m} = 1506.41 \frac{k pa}{kg}

This is the value of mean effective pressure of the cycle.

4 0
3 years ago
An example of the split-off point in oil, gasoline, and kerosene production is that point where crude oil is
eimsori [14]

i believe the correct answer is c but i’m sorry if i’m not correct

8 0
4 years ago
A body is moving with simple harmonic motion. It's velocity is recorded as being 3.5m/s when it is at 150mm from the mid-positio
natima [27]

Answer:

1) A=282.6 mm

2)a_{max}=60.35\ m/s^2

3)T=0.42 sec

4)f= 2.24 Hz

Explanation:

Given that

V=3.5 m/s at x=150 mm     ------------1

V=2.5 m/s at x=225 mm   ------------2

Where x measured  from mid position.

We know that velocity in simple harmonic given as

V=\omega \sqrt{A^2-x^2}

Where A is the amplitude and ω is the natural frequency of simple harmonic motion.

From equation 1 and 2

3.5=\omega \sqrt{A^2-0.15^2}    ------3

2.5=\omega \sqrt{A^2-0.225^2}   --------4

Now by dividing equation 3 by 4

\dfrac{3.5}{2.5}=\dfrac {\sqrt{A^2-0.15^2}}{\sqrt{A^2-0.225^2}}

1.96=\dfrac {{A^2-0.15^2}}{{A^2-0.225^2}}

So    A=0.2826 m

A=282.6 mm

Now by putting the values of A in the equation 3

3.5=\omega \sqrt{A^2-0.15^2}

3.5=\omega \sqrt{0.2826^2-0.15^2}

ω=14.609 rad/s

Frequency

ω= 2πf

14.609= 2 x π x f

f= 2.24 Hz

Maximum acceleration

a_{max}=\omega ^2A

a_{max}=14.61 ^2\times 0.2826\ m/s^2

a_{max}=60.35\ m/s^2

Time period T

T=\dfrac{2\pi}{\omega}

T=\dfrac{2\pi}{14.609}

T=0.42 sec

8 0
4 years ago
Drilling is an example of what type of manufacturing process?
k0ka [10]

Answer:

  Machining

Explanation:

Drilling is a machining operation. It involves using a cutting tool to alter the shape.

5 0
3 years ago
A safety interlock module operates by monitoring the voltage from the
In-s [12.5K]

Answer: its an Ignition coil

8 0
4 years ago
Other questions:
  • A large well-mixed tank of unknown volume, open to the atmosphere initially, contains pure water. The initial height of the solu
    12·1 answer
  • Question about transformers and generators
    5·1 answer
  • The cylindrical aluminum air tank below is to be rated for 300 psi and it must comply with the ASME Boiler Code which requires a
    5·2 answers
  • The lid on a pressure vessel is held down with 10 bolts that pass through the lid and a flange on the pressure vessel (similar t
    6·1 answer
  • Assume that light of wavelength 6000A is coming from a star. What is the limit of resolution of a telescope whose objective has
    7·1 answer
  • Which of the following are true about algorithms? (You may select more than one)
    10·2 answers
  • Which step of the critical thinking process determines the main idea to be understood in order for the information or data to ma
    14·1 answer
  • 10. True or False? A disruptive technology<br> radically changes the way people live and<br> work.
    5·2 answers
  • A programmable integrated circuit (PIC) is another name for a microcontroller.
    11·1 answer
  • More and more companies are discarding the traditional superior-subordinate performance feedback process and replacing it with:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!