The pressure of water is 7.3851 kPa
<u>Explanation:</u>
Given data,
V = 150×

m = 1 Kg
= 2 MPa
= 40°C
The waters specific volume is calculated:
= V/m
Here, the waters specific volume at initial condition is
, the containers volume is V, waters mass is m.
= 150×
/1
= 0.15
/ Kg
The temperature from super heated water tables used in interpolation method between the lower and upper limit for the specific volume corresponds 0.15
/ Kg and 0.13
/ Kg.
= 350+(400-350) 
= 395.17°C
Hence, the initial temperature is 395.17°C.
The volume is constant in the rigid container.
=
= 0.15
/ Kg
In saturated water labels for
= 40°C.
= 0.001008
/ Kg
= 19.515
/ Kg
The final state is two phase region
<
<
.
In saturated water labels for
= 40°C.
=
= 7.3851 kPa
= 7.3851 kPa
Answer:
il(t) = e^(-100t)
Explanation:
The current from the source when the switch is closed is the current through an equivalent load of 15 + 50║50 = 15+25 = 40 ohms. That is, it is 80/40 = 2 amperes. That current is split evenly between the two parallel 50-ohm resistors, so the initial inductor current is 2/2 = 1 ampere.
The time constant is L/R = 0.20/20 = 0.01 seconds. Then the decaying current is described by ...
il(t) = e^(-t/.01)
il(t) = e^(-100t) . . . amperes
Answer: I would help you but I don’t know the answer, so sorry
Answer:
8*10000+3*1000+1*00+2*10+2
Explanation: