The tensile stress of the wire supporting 2 kg mass is determined as 6.1 x 10⁷ N/m².
<h3>
Tensile stress of the wire</h3>
The tensile stress of the wire is calculated as follows;
σ = F/A
where;
A = πr² = πD²/4
where;
A = π x (0.64 x 10⁻³)²/4
A = 3.22 x 10⁻⁷ m²
σ = F/A = (mg)/A = (2 x 9.8)/( 3.22 x 10⁻⁷)
σ = 6.1 x 10⁷ N/m²
Learn more about tensile stress here: brainly.com/question/25748369
#SPJ1
Yes, if we know the Earth's mass
Explanation:
The momentum of an object is a vector quantity given by the equation

where
m is the mass of the object
v is its velocity
In this case, we are asked if we can find the velocity of the Earth by starting from its momentum. Indeed, we can. In fact, we can rewrite the equation above as

Therefore, if we know the momentum of the Earth (p) and we know its mass as well (m), we can solve the formula to find the Earth's velocity.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
Th-234, Pa-234
Explanation:
In alpha decay, 2 protons and 2 neutrons are lost. So U-238 would become Th-234.
In beta decay, one neutron is turned into a proton. So Th-234 would become Pa-234.
You don't count trailing zeros. A.29.3