Answer:
The minimum distance between two points on the object that are barely resolved is 0.26 mm
The corresponding distance between the image points = 0.0015 m
Explanation:
Given
focal length f = 50 mm and maximum aperture f>2
s = 9.0 m
aperture = 25 mm = 25 *10^-3 m
Sin a = 1.22 *wavelength /D
Substituting the given values, we get –
Sin a = 1.22 *600 *10^-9 m /25 *10^-3 m
Sin a = 2.93 * 10 ^-5 rad
Now
Y/9.0 m = 2.93 * 10 ^-5
Y = 2.64 *10^-4 m = 0.26 mm
Y’/50 *10^-3 = 2.93 * 10 ^-5
Y’ = 0.0015 m
Answer:
1.1 m/s²
Explanation:
From the question,
F -mgμ = ma.................... Equation 1
Where F = applied force, m = mass of the apple cart, g = acceleration due to gravity, μ = coefficient of friction., a = acceleration of the apple cart.
Given: F = 115 N, m = 25 kg, μ = 0.35
Constant: g = 10 m/s²
Substitute these values into equation 2
115-(25×10×0.35) = 25×a
115-87.5 = 25a
25a = 27.5
a = 27.5/25
a = 1.1 m/s²
Find the force that would be required in the absence of friction first, then calculate the force of friction and add them together. This is done because the friction force is going to have to be compensated for. We will need that much more force than we otherwise would to achieve the desired acceleration:

The friction force will be given by the normal force times the coefficient of friction. Here the normal force is just its weight, mg

Now the total force required is:
0.0702N+0.803N=0.873N
Answer:
L = 1.11 x
m, is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.
Explanation:
Solution:
Data Given:
Heat Energy = 52000 J
Dielectric Constant of the plastic Bag = 3.7 = K
Thickness = 2.6 x
m =d
V = 610 volts
A = width x Length
width = 20 cm = 20 x
m
Length = ?
So,
we know that,
U = 1/2 C Δ
U = 52000 J
C = ?
V = 610 volts'
So,
U = 1/2 C Δ
52000 J = (0.5) x (C) x (
)
C = 0.28 F
And we also know that,
C = 
E = 8.85 x 
K = 3.7
A = 0.20 x L
d = 2.6 x
m
Plugging in the values into the formula, we get:
0.28 = 
Solving for L, we get:
L = 1.11 x
m,
is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.
Answer:
An object at rest does not move and an object in motion does not change its velocity, unless an external force acts upon it
Explanation:
This statement is also known as Newton's first law, or law of inertia.
It states that the state of motion of an object can be changed only if there is an external force (different from zero) acting on it: therefore
- If an object is at rest, it will remain at rest if there is no force acting on it
- If an object is moving, it will continue moving at constant velocity if there is no force acting on it
This phenomenon can be also understood by looking at Newton's second law:
F = ma
where
F is the net force on an object
m is the mass
a is the acceleration
If the net force is zero, F = 0, the acceleration of the object is also zero, a = 0: therefore, the velocity of the object does not change, and it will continue moving at the same velocity (which can be zero, if the object was at rest).