<span>v(4 seconds)= 300 m/s - 9.8 (m/s^2)(4s) = 260.8 m/s </span>, hope this helps:)
Answer:
5.23km/s
Explanation:
Given
Radius of Earth = 6.37 * 10^6 m
Altitude of Satellite = 8200km = 8200 * 10³m = 8.2 * 10^6 m
Gravity Acceleration on Satellite Altitude = 1.87965m/s²
For a satellite to remain in circular orbit, then it means the acceleration of gravity must be exact as the centripetal acceleration.
Centripetal Acceleration = V²/R
So, Acceleration of Gravity (A)= Centripetal Acceleration = V²/R
Make V the subject of formula
A = V²/R
V² = AR
V = √AR
Where R = (radius of earth) + (altitude of satellite)
R = 6.37 * 10^6 + 8.2 * 10^6
R = 14.57 * 10^6m
A = 1.87965m/s²
V = √(1.87965 * 14.57x10^6)
V = √27386500.5
V = 5233.211299001789
V = 5233.2113 m/s ------- Approximated
V = 5.23km/s
The answer would be 6 because 2.0x3= 6
(newton’s 2nd law)
mark me brainliest
Answer:
3. if you increase your mass you also increase the gravitational pull
6. Radiant energy doesn't depend on a medium and sound energy is dependent on a medium.
Explanation:
i hope this helps-
DE which is the differential equation represents the LRC series circuit where
L d²q/dt² + Rdq/dt +I/Cq = E(t) = 150V.
Initial condition is q(t) = 0 and i(0) =0.
To find the charge q(t) by using Laplace transformation by
Substituting known values for DE
L×d²q/dt² +20 ×dq/dt + 1/0.005× q = 150
d²q/dt² +20dq/dt + 200q =150