Answer:
a. osteoblasts
b. osteoid
Explanation:
Osteoblasts are the fundamental cell of bone tissue. They are the cells that synthesize the bone matrix called osteoid from which it is made from the skeleton of bone fish, to the skeleton of humans. Since the bone skeleton is an evolutionary paraphiletic characteristic (it is present in several taxonomic groups that have evolved from the same ancestor).
Osteoblasts are responsible for the development and growth of bones during the juvenile stage of individuals and are also responsible for maintaining adult bone and regenerating bone when it breaks.
Osteogenesis is the process of differentiation of osteoblasts. The cells from which osteoblasts differ are called osteoprogenitors. The differentiation of osteoprogenitor cells, which come from the mesoderm, periosteum or bone marrow, is induced by growth factors called bone morphogenetic proteins (BMPs), capable of inducing the growth of bone, cartilage or connective tissue. When an osteoprogenitor cell receives a BMP signal, it quickly begins to express the genes to generate collagen, osteonectin and alkaline phosphatase, among other compounds necessary for bone growth. When the bone grows, it ends up wrapping some of the osteoblasts and they lose their ability to replicate, at that time they are dedicated to bone maintenance and not to their synthesis and are called osteocytes.
Like 50 miles for the outermost layer which is called the LITHOSPHERE
The process by which organisms create sugars (specifically glucose) from non-carbohydrate precursors is known as gluconeogenesis.
- The only energy source used by the brain, testes, erythrocytes, and renal medulla is glucose, with the exception of ketone bodies during fasting. There are three highly exergonic stages in glycolysis. Hexokinase, phosphofructokinase, and pyruvate kinase are among the enzymes involved in these additional regulatory stages. In biological processes, both forward and backward reactions are possible.
- Similar to glycolysis, but with the process going the other way, is gluconeogenesis. Fructose-1,6-bP, glucose-6-P, and pyruvate all undergo fairly spontaneous conversions in the process of gluconeogenesis, which is why these reactions are tightly controlled.
- For the organism to function properly, energy conservation is crucial. Gluconeogenesis is suppressed when there is an abundance of energy available.
Therefore, gluconeogenesis conserve more energy.
Learn more about gluconeogenesis:
brainly.com/question/1425339
#SPJ4
The number of electrons in the outermost shell of an atom
Answer:
As long as there is enzyme and hydrogen peroxide present in the solution, the reaction continues and foam is produced. Once one of both compounds is depleted, the product formation stops. If you do not add dish soap to the reaction, you will see bubbles generated but no stable foam formation.
Explanation: