There are 12 boys and 21 girls for a total of 33 students
I’m not sure if this is right!
Although the number of new wildflowers is decreasing, the total number of flowers is increasing every year (assuming flowers aren't dying or otherwise being removed). Every year, 25% of the number of new flowers from the previous year are added.
The sigma notation would be:
∑ (from n=1 to ∞) 4800 * (1/4)ⁿ , where n is the year.
Remember that this notation should give us the sum of all new flowers from year 1 to infinite, and the values of new flowers for each year should match those given in the table for years 1, 2, and 3
This means the total number of flowers equals:
Year 1: 4800 * 1/4 = 1200 ]
+
Year 2: 4800 * (1/4)² = 300
+
Year 3: 4800 * (1/4)³ = 75
+
Year 4: 4800 * (1/4)⁴ = 18.75 = ~19 (we can't have a part of a flower)
+
Year 5: 4800 * (1/4)⁵ = 4.68 = ~ 5
+
Year 6: 4800 * (1/4)⁶ = 1.17 = ~1
And so on. As you can see, it in the years that follow the number of flowers added approaches zero. Thus, we can approximate the infinite sum of new flowers using just Years 1-6:
1200 + 300 + 75 + 19 + 5 + 1 = 1,600
Answer:
6/5
Step-by-step explanation:
I hope that it's a clear solution.
Answer:
Pretty Simple!
Now that you know about ratios and all that, this is pretty tame compared to the last problem.
Now, the problem is talking 2D(2 Dimensions)
The ratio is not going to work because it has only one parameter.
Thus, we need to square it!
Thus, we have your correct ratio.
Now, we only need to do the same thing for the triangle problem. Meaning that, we need to compare the ratios, with x as the thing we are looking for.
See? X is practically handed to us.
Hope this helps!
Answer:
Can you provide a photo of the reflection please
Step-by-step explanation: