The tension force being supplied by the rope is 245 N.
<h3>What is tension force?</h3>
- Tension force is the force exerted on a rope or cord due to the weight of an object suspended from it.
The tension force on the given rope due to the weight of the lamp hanging from the rope is calculated by applying Newton's second law of motion as shown below;
T = mg
where;
- m is the mass = 25 kg
- g is acceleration due to gravity = 9.8 m/s²
T = 25 x 9.8
T = 245 N
Thus, the tension force being supplied by the rope is 245 N.
Learn more about tension force here: brainly.com/question/12797227
If you are talking about ocean waves crashing into each other, they would probably mostly cancel out with just a bit of motion left over. If you are talking about things like frequency and amplitude, overlapping waves would combine and amplify or suppress each other, depending on their direction, position, frequency and amplitude. If the two waves complement each other, they amplify; if they conflict with each other, they are suppressed.
Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.
Explanation:
- Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
- Let
be the speed of the river's current given as 1.00 m/s.
- Note that this speed is the magnitude of the velocity which is a vector quantity.
- The direction of the swimmer is upstream.
Hence the resultant velocity is given as,
= S — S 0
= 1.25 — 1
= 0.25 m/s.
Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.
<span>Jet streams act as an invisible director of the atmosphere and are largely responsible for changes in the weather across the globe.
Hope this helps</span>
Physics- damon, Monday, December 1, 2014 at 3:27 pm force =change in momentum\ change in time or m a if m is constant
change in momentum/3=200
change in momentum =3*200 kg m/s