Answer:
Explanation:
Hello! To solve this problem we must be clear about the concept of energy conservation, and kinetic energy with the following sentence
The kinetic energy of the two cars (v = 1.2m / S) plus the kinetic energy of the third car (v = 3.5m / S) must be equal to the kinetic energy of the three cars together.
The kinetic energy is calculated by the following equation.

m= mass of the cars=26500kg
V=speed
E=kinetic energy
taking into account the above, the following equation is inferred
1= the cars are separated
2=
the cars are togheter
E1=E2

where
m= mass of each car
V1= 1.2m/s
Va=3.5,m/S

m= mass of each car
V=speed (in m/s) of the three coupled cars after the first couples with the other two
Solving



the speed of the three coupled cars after the first couples with the other two is 2.245m/s
The one that does not involve chemical energy would be : C. Coasting downhill on a bike
This one requires physical energy, To be categorized as chemical energy, the bond of chemical compounds has to be released
Hope this helps
Answer: something must drop it over
Explanation:
Answer:
0.002 m or 2 mm
Explanation:
Given that:
Force, F = 50N
Area = 1 * 10^-5
Length, L = 10m
Shear modulus, = 2.5 * 10^10
Using the relation ;
D = (50 ÷ 1*10^-5) ÷ (2.5 * 10^10 ÷ 10)
D = 5000000 ÷ 2.5 * 10^9
D = 5 * 10^6 ÷ 2.5 * 10^9
D = (5/2.5) * 10^(6-9)
D = 2 * 10^-3
D = 0.002 m
1m = 1000 mm
0.002m = (1000 * 0.002) = 2 mm
Answer:
a = - 11.53[m/s^2]
Explanation:
The airplane slows down as its speed decreases from the initial value of 610 [m/s] to zero.
To calculate the acceleration value we use the following kinematics equation:

where:
Vf = final velocity = 0
Vi = initial velocity = 610 [m/s]
a = acceleration [m/s2]
t = time = 53 [s]
Now replacing:
0 = 610 + (a*53)
-610 = 53*a
a = - 11.53[m/s^2]
The negative sign means that the aircraft is losing speed, i.e. slowing down