Answer:
(a) V = 0.75 m/s
(b) V = 0.125 m/s
Explanation:
The speed of the flow of the river can be given by following formula:
V = Q/A
V = Q/w d
where,
V = Speed of Flow of River
Q = Volume Flow Rate of River
w = width of river
d = depth of river
A = Area of Cross-Section of River = w d
(a)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 20 m
d = 20 m
Therefore,
V = (300 m³/s)/(20 m)(20 m)
<u>V = 0.75 m/s</u>
<u></u>
(b)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 60 m
d = 40 m
Therefore,
V = (300 m³/s)/(60 m)(40 m)
<u>V = 0.125 m/s</u>
Answer:
U = – 0.12J
Explanation:
Given N = 10 turns, I = 5A, r = 5×10-²m
B^ = 0.05 T iˆ+ 0.3 T kˆ
Magnitude of the magnetic field vector B = √(0.05²+0.3²) = 0.304T
Area = πr² = π(5×10-²)² = 7.85×10-³m²
Magnetic moment μ = NIA
μ = 10×5×7.85×10-³ = 0.3925Am²
U = -μ•B = –0.3925×0.304 = –0.12J
The sign is negative because the magnetic moment is aligned with the magnetic field.
Answer:
269 m
45 m/s
-58.6 m/s
Explanation:
Part 1
First, find the time it takes for the package to land. Take the upward direction to be positive.
Given (in the y direction):
Δy = -175 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(-175 m) = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 5.98 s
Next, find the horizontal distance traveled in that time:
Given (in the x direction):
v₀ = 45 m/s
a = 0 m/s²
t = 5.98 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (45 m/s) (5.98 s) + ½ (0 m/s²) (5.98 s)²
Δx = 269 m
Part 2
Given (in the x direction):
v₀ = 45 m/s
a = 0 m/s²
t = 5.98 s
Find: v
v = at + v₀
v = (0 m/s²) (5.98 s) + (45 m/s
v = 45 m/s
Part 3
Given (in the y direction):
Δy = -175 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: v
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (-9.8 m/s²) (-175 m)
v = -58.6 m/s
The best and most correct answer among the choices provided by the question is the second choice. The rope will not be broken until the net force acting on it is not equal to zero anymore. I hope my answer has come to your help. God bless and have a nice day ahead!