Answer:
t = 4.08 s
R = 40.8 m
Explanation:
The question is asking us to solve for the time of flight and the range of the rock.
Let's start by finding the total time it takes for the rock to land on the ground. We can use this constant acceleration kinematic equation to solve for the displacement in the y-direction:
We have these known variables:
- (v_0)_y = 0 m/s
- a_y = -9.8 m/s²
- Δx_y = -20 m
And we are trying to solve for t (time). Therefore, we can plug these values into the equation and solve for t.
- -20 = 0t + 1/2(-9.8)t²
- -20 = 1/2(-9.8)t²
- -20 = -4.9t²
- t = 4.08 sec
The time it takes for the rock to reach the ground is 4.08 seconds.
Now we can use this time in order to solve for the displacement in the x-direction. We will be using the same equation, but this time it will be in terms of the x-direction.
List out known variables:
- v_0 = 10 m/s
- t = 4.08 s
- a_x = 0 m/s
We are trying to solve for:
By using the same equation, we can plug these known values into it and solve for Δx.
- Δx = 10 * 4.08 + 1/2(0)(4.08)²
- Δx = 10 * 4.08
- Δx = 40.8 m
The rock lands 40.8 m from the base of the cliff.
The net displacement at a point on the string where the pulses cross is 0.2 m.
The term "displacement" refers to a shift in an object's position. It has a magnitude and a direction, making it a vector quantity. An arrow pointing from the starting point to the finishing point serves as its symbol.
A string that is connected to a post at one end is used to transmit a sequence of pulses, each measuring 0.1 meters in amplitude.
At the post, the pulses are reflected and return along the string without losing any of their amplitude.
Now, let's say the ends are free.
There is no inversion on reflection if the end is free. The amplitude at their intersection is 2A.
Now, since A = 0.1 m
Then, 2A = 2(0.1) = 0.2 m
As a result, the net displacement at the string's intersection of two pulses is 0.2 m.
The correct option is (c).
Learn more about amplitude here:
brainly.com/question/3613222
#SPJ4
Answer:
incomplete question, resistor must be there
Explanation:
Answer:
Power is the rate at which work is done or energy is transferred in a unit of time. Power is increased if work is done faster or energy is transferred in less time.
Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.