Answer:
A perfectly elastic collision is defined as one in which there is no loss of kinetic energy in the collision. An inelastic collision is one in which part of the kinetic energy is changed to some other form of energy in the collision.
Answer:
See description
Explanation:
This is an example where we need Tornicelli's law, which states that the horizontal speed of a fluid that starts falling from an orifice is the same speed that an object acquires from free-falling.

we are given:
![h_{cilinder} = 0.2 [m]\\h = 0.05 [m]\\d=0.15[m]](https://tex.z-dn.net/?f=h_%7Bcilinder%7D%20%3D%200.2%20%5Bm%5D%5C%5Ch%20%3D%200.05%20%5Bm%5D%5C%5Cd%3D0.15%5Bm%5D)
the horizontal velocity of the water at the start is:
![v = \sqrt{2(9.8)(0.05)}=0.989949 [m/s]=1[m/s]](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B2%289.8%29%280.05%29%7D%3D0.989949%20%5Bm%2Fs%5D%3D1%5Bm%2Fs%5D)
now we need to find the time for the water drops to fall d:
as the gravity is the only force interacting with the water we have:

replace for y = d
![0.15 = \frac{1}{2} g*t^2=>t=\sqrt{\frac{2*0.15}{9.8}}=0.1749[s]](https://tex.z-dn.net/?f=0.15%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20g%2At%5E2%3D%3Et%3D%5Csqrt%7B%5Cfrac%7B2%2A0.15%7D%7B9.8%7D%7D%3D0.1749%5Bs%5D%20)
now that we have t we notice that there are no horizontal forces interacting with the water, so the horizontal position is given by:

Finally, we replace v and t:
![x(2.45) = 1*0.1749 = 0.1749 [m]=17.49[cm]](https://tex.z-dn.net/?f=x%282.45%29%20%3D%201%2A0.1749%20%3D%200.1749%20%5Bm%5D%3D17.49%5Bcm%5D)
The main reason as to why those telescopes that are located above the Earth's atmosphere is because the atmosphere absorbs infrared light which comes from the sun and this affects the viewing done by the astronomers. That is why, this is considered as a great disadvantage for those ground-based telescopes. The answer would be the last option.