Explanation:
1. Force applied on an object is given by :
F = W = mg
(a) A 160 lb human being, F = 160 lb
g = acceleration due to gravity, g = 32 ft/s²


m = 5 kg
(b) A 1.9 lb cockatoo, F = 1.9 lb


m = 0.059 kg
2. (a) A 2300 kg rhinoceros, m = 2300 kg

(b) A 22 g song sparrow, m = 22 g = 0.022 kg

Hence, this is the required solution.
Constant speed because the time is directly proportional to the speed (2). The average speed is 2 m/s
Answer:
ummm there is nothing attached :(
Explanation:
Answer:

Explanation:
The magnitude of the electrostatic force between two charged objects is

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
The force is attractive if the charges have opposite sign and repulsive if the charges have same sign.
In this problem, we have:
is the distance between the charges
since the charges are identical
is the force between the charges
Re-arranging the equation and solving for q, we find the charge on each drop:

Answer:
A.) 1430 metres
B.) 80 seconds
Explanation:
Given that the train accelerates from rest at 1.1m/s^2 for 20s. The initial velocity U will be:
U = acceleration × time
U = 1.1 × 20 = 22 m/s
It then proceeds at constant speed for 1100 m
Then, time t will be
Time = distance/ velocity
Time = 1100/22
Time = 50 s
before slowing down at 2.2m/s^2 until it stops at the station.
Deceleration = velocity/time
2.2 = 22/t
t = 22/2.2
t = 10s
Using area under the graph, the distance between the two stations will be :
(1/2 × 22 × 20) + 1100 + (1/2 × 22 × 10)
220 + 1100 + 110
1430 m
The time taken between the two stations will be
20 + 50 + 10 = 80 seconds