Answer:
my opinion would be electric
Explanation:
because when it comes down to the bare minimum the best choice for the world in the long run would be electric because it puts a big dent back for global warming and the burning of gasses so the more people who drive electric cars are the people who are trying to save the world a little at a time by preventing the burning of gasses. hope this helps :)
Answer:
The stand-by equipment is technically required in case where the we need some urgent equipment for the purpose of maintenance in emergency and if the other equipment system get fails. the term stand by means backup equipment and component.
In the reliability engineering, we always need to provide an extra equipment or component in case of emergency. It is basically used so that it does not affect any type of productivity in the organization. It is also increase the redundancy of the equipment.
Answer:
The voltage source required to provide 1.6 A of current through the 75 ohm resistance is 120 V.
Explanation:
Given;
Resistance, R₁ = 50Ω
Resistance, R₂ = 75Ω
Total resistance, R = (R₁R₂)/(R₁ + R₂)
Total resistance, R = (50 x 75)/(125)
Total resistance, R = 30 Ω
According to ohms law, sum of current in a parallel circuit is given as
I = I₁ + I₂

Voltage across each resistor is the same
V = 1.6 x R₂
V = 1.6 x 75
V = 120 V
Therefore, the voltage source required to provide 1.6 A of current through the 75 ohm resistance is 120 V.
This voltage is also the same for 50 ohms resistance but the current will be 2.4 A.
Answer:
T_{f} = 90.07998 ° C
Explanation:
This is a calorimetry process where the heat given by the Te is absorbed by the air at room temperature (T₀ = 25ºC) with a specific heat of 1,009 J / kg ºC, we assume that the amount of Tea in the cup is V₀ = 100 ml. The bottle being thermally insulated does not intervene in the process
Qc = -Qb
M
(T₁ -
) = m
(T_{f}-T₀)
Where M is the mass of Tea that remains after taking out the cup, the density of Te is the density of water plus the solids dissolved in them, the approximate values are from 1020 to 1200 kg / m³, for this calculation we use 1100 kg / m³
ρ = m / V
V = 1000 -100 = 900 ml
V = 0.900 l (1 m3 / 1000 l) = 0.900 10⁻³ m³
V_air = 0.100 l = 0.1 10⁻³ m³
Tea Mass
M = ρ V_te
M = 1100 0.9 10⁻³
M = 0.990 kg
Air mass
m = ρ _air V_air
m = 1.225 0.1 10⁻³
m = 0.1225 10⁻³ kg
(m c_{e_air} + M c_{e_Te}) T_{f}. = M c_{e_Te} T1 - m c_{e_air} T₀
T_{f} = (M c_{e_Te} T₁ - m c_{e_air} T₀) / (m c_{e_air} + M c_{e_Te})
Let's calculate
T_{f} = (0.990 1100 90.08– 0.1225 10⁻³ 1.225 25) / (0.1225 10⁻³ 1.225 + 0.990 1100)
T_{f} = (98097.12 -3.75 10⁻³) / (0.15 10⁻³ +1089)
T_{f} = 98097.11 / 1089.0002
T_{f} = 90.07998 ° C
This temperature decrease is very small and cannot be measured
Answer:
The expansion of the Roman Empire helped grow trade.
Caesar Augustus stabilized prices and promoted trade by establishing a common currency.
Roads helped the economy by connecting inland areas to water routes.
Improvements in agriculture led to better trade and made Rome less dependent on wheat from Egypt.