Answer: *changed*
Explanation: Because you peed
Answer:
Maximum Normal Stress σ = 8.16 Ksi
Maximum Shearing Stress τ = 4.08 Ksi
Explanation:
Outer diameter of spherical container D = 17 ft
Convert feet to inches D = 17 x 12 in = 204 inches
Wall thickness t = 0.375 in
Internal Pressure P = 60 Psi
Maximum Normal Stress σ = PD / 4t
σ = PD / 4t
σ = (60 psi x 204 in) / (4 x 0.375 in)
σ = 12,240 / 1.5
σ = 8,160 P/in
σ = 8.16 Ksi
Maximum Shearing Stress τ = PD / 8t
τ = PD / 8t
τ = (60 psi x 204 in) / (8 x 0.375 in)
τ = 12,240 / 3
τ = 4,080 P/in
τ = 4.08 Ksi
Answer:
Explanation:
First we compute the characteristic length and the Biot number to see if the lumped parameter
analysis is applicable.
Since the Biot number is less than 0.1, we can use the lumped parameter analysis. In such an
analysis, the time to reach a certain temperature is given by the following
From the data in the problem we can compute the parameter, b, and then compute the time for
the ratio (T – T)/(Ti
– T)