Answer:
Explanation:
Considering the relation of the equilibrium vacancy concentration ;
nv/N = exp (-ΔHv/KT)
Where T is the temperature at which the vacancy sites are formed
K = Boltzmaan constant
ΔHv = enthalpy of vacancy formation
Rearranging the equation and expressing in term of the temperature and plugging the values given to get the temperature. The detailed steps is as shown in the attached file
Answer:
The issues related to the privacy are:
1. Informational privacy
2. Discrimination factors
3. Biased grouping on the basis of Data mining
4. Lack of consent
5. Morally wrong
6. Illegal distribution of information risks
7. Possibility of threat to life
Let's look at some major concerns:
1. Informational privacy : The concept of privacy of the personal information is totally nullified when the information is being used for a purpose other than the intended one for which it was given. This unethical use of information even for general purposes is not correct and is a matter of concern. It is more like using the sensitive data of others for personal benefit which is purely objectionable and raises security issues. Sometimes the data is also shared with the potential employers which might have certain impacts we are unaware of.
2. Data mining issues : The process of using a certain information to arrive and understand the trend and outcomes is called data mining. In this case, the consumer's data undergoes grouping and might get placed in the wrong group rather than the actual one. Also, there can be a case of biasing towards the groups which are not be focused on, or are not a part of the intended audience. This leads to the discrimination factors if we see it from a social point of view.
3. Lack of consent : Use of information without the consent or awareness of the consumers raises concern over the business ethics followed by the company. No one deserves the right to misuse information for his personal benefits without any of its information to the consumer. It is morally wrong and againt the work ethics. Moreover, it raises trust issues between the two involved, and hence is socially unacceptable.
Answer:
1709.07 ft^3/s
Explanation:
Annual peak streamflow = Log10(Q [ft^3/s] )
mean = 1.835
standard deviation = 0.65
Probability of levee been overtopped in the next 15 years = 1/5
<u>Determine the design flow ins ft^3/s </u>
P₁₅ = 1 - ( q )^15 = 1 - ( 1 - 1/T )^15 = 0.2
∴ T = 67.72 years
Q₁₅ = 1 - 0.2 = 0.8
Applying Lognormal distribution : Zt = mean + ( K₂ * std ) --- ( 1 )
K₂ = 2.054 + ( 67.72 - 50 ) / ( 100 - 50 ) * ( 2.326 - 2.054 )
= 2.1504
back to equation 1
Zt = 1.835 + ( 2.1504 * 0.65 ) = 3.23276
hence:
Log₁₀ ( Qt(ft^3/s) ) = Zt = 3.23276
hence ; Qt = 10^3.23276
= 1709.07 ft^3/s
Answer: Fulcrum
Definition:
the point on which a lever rests or is supported and on which it pivots.
Answer: 0.2m sqr
Explanation:
A well behaved aircraft basically have a value of volume in horizontal and vertical area.
Volume in horizontal area (Vh) = 0.6
Volume in vertical area (Vv) = 0.05
Having known this, consider the relationship to find the vertical and horizontal tail sizes.
Vertical tail area (Sv)
Horizontal tail area (Sh)
Vh= (Sh × I) / S
Where,
I = moment
S= wing area
Sh= Horizontal tail area
Vh= Volume in horizontal area
0.6= Sh × 10/40
24= 10Sh
Sh= 24/10
Sh= 2.4 msqr
Horizontal tail area= 2.4m sqr
From the information above, we can calculate the vertical tail area.
Vertical tail area is calculated thus below:
Vv= (Sv× I) / S
Where
Vv= Volume in vertical area
Sv= Vertical tail area
I= Moment
S= Wing area
Therefore
Sv= (Vv × S) /I
Sv= (0.05×40)/10
Sv= 0.2msqr
In conclusion, the vertical tail size is 0.2msqr