Answer:4050 W
Explanation:
Given
Heat transfer Coefficient(h)=
Air temperature =75 F
surface area(A)=
Temperature of hot tube is 102 F
We know heat transfer due to convection is given by


Answer:
it would affect the distance the antiantibodies diffuse from the disk
Explanation:
Answer:
19063.6051 g
Explanation:
Pressure = Atmospheric pressure + Gauge Pressure
Atmospheric pressure = 97 kPa
Gauge pressure = 500 kPa
Total pressure = 500 + 97 kPa = 597 kPa
Also, P (kPa) = 1/101.325 P(atm)
Pressure = 5.89193 atm
Volume = 2.5 m³ = 2500 L ( As m³ = 1000 L)
Temperature = 28 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28.2 + 273.15) K = 301.15 K
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
5.89193 atm × 2500 L = n × 0.0821 L.atm/K.mol × 301.15 K
⇒n = 595.76 moles
Molar mass of oxygen gas = 31.9988 g/mol
Mass = Moles * Molar mass = 595.76 * 31.9988 g = 19063.6051 g
Answer:
1791 secs ≈ 29.85 minutes
Explanation:
( Initial temperature of slab ) T1 = 300° C
temperature of water ( Ts ) = 25°C
T2 ( final temp of slab ) = 50°C
distance between slab and water jet = 25 mm
<u>Determine how long it will take to reach T2</u>
First calculate the thermal diffusivity
∝ = 50 / ( 7800 * 480 ) = 1.34 * 10^-5 m^2/s
<u>next express Temp as a function of time </u>
T( 25 mm , t ) = 50°C
next calculate the time required for the slab to reach 50°C at a distance of 25mm
attached below is the remaining part of the detailed solution
Okay sure.
I’ll 1)chords
2)pulse
3)aerophone
4) the answer is C
5)rhythm
Pretty sure those are the answers