1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
2 years ago
6

3. Hahn determined that barium (atomic number 56) was one of the elements created when a uranium atom (atomic number 92) split .

Use a periodic table to determine the other element that was created during this process.​
Physics
1 answer:
creativ13 [48]2 years ago
8 0

According to a periodic table, Krypton was created during the fission of Uranium.

<h3>What is the atomic number?</h3>

<em>Atomic</em> number is a characteristic associated with an element and indicates its number of protons, when a fision occurs, the total number protons is conserved.

Thus, the fission of uranium is led by two elements with <em>atomic</em> numbers 56 and 36. According to a periodic table, those <em>atomic</em> numbers are associated to elements Barium (Ba) and Krypton (Kr), respectively.

According to a periodic table, Krypton was created during the fission of Uranium. \blacksquare

To learn more on fission, we kindly invite to check this verified question:  brainly.com/question/6572079

You might be interested in
Snakes and lizards are rarely found near polar environment explain why
Novosadov [1.4K]
Reptiles, such as snakes and lizards, are cold-blooded animals. This means that they do not have the ability to control their body heat. For this reason, they often lay out in the sun to warm up. If their enviornent is cold they obtain that body temperature. They are very slow in colder environments.In cold weather these animals have a very difficult time moving because their muscles are very cold. Without heat in their environment, they cannot warm them up.
4 0
3 years ago
The following data were collected during a short race between two friends. Velocity (m/s) 0 0.5 1 1.5 2 2 4 6 2 0 Time (s) 0 2 4
scoundrel [369]

The characteristics of the kinematics allow to find the results for the questions about the movement of the body are:

a)  we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b)  The acceleration is the first 8 s is:  a = 0.25 m / s²

c) The maximum acceleration is:    a = 1 m / s²

d) The displacement   is:  i) d₁ =  8m,     ii)  d_{total}= 16 m

e) maximum speed  is:      v = 6 m / s

Kinematics studies the movement of bodies by finding relationships between the position, speed and acceleration of bodies.

        v = v₀ + a t

        y = v₀ t + ½ a t²

where v and v₀ is the current and initial velocity, respectively, a is the acceleration and t is time.

In many circumstances graphs are made for their analysis, in a graph of speed versus time when we have a horizontal line the speed is constant, the acceleration is zero and in the case of a slope there is an acceleration, we have two cases:

  • Positive slope the body is accelerating and the speed is increasing.
  • Negative slope the body is stopping, the speed decreases.

Let's answer the different questions about the system.

a) in the attached we have a graph of the velocity versus time, each section corresponds to a change in the slope of the graph, we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b) The acceleration is the first 8 s

          v = v₀ + a t

          a = \frac{v-v_o}{\Delta t}  

          a = \frac{2-0}{8-0}  

          a = 0.25 m / s²

c) The maximum acceleration is when the slope is maximum.

          a = \frac{6-2}{ 14-10}  

          a = 1 m / s²

Therefore the acceleration is maximum in the section between 10 and 14 s

d) The total displacement is the sum of the displacements of each section.

         d_{total } = d_1 +d_2 + d_3 +d_4  

We look for every displacement.

       d₁ = v₀ + ½ a₁ Δt²

       d₁ = 0 + ½ 0.25 8²

       d₁ = 8 m

In the second section the velocity is constant

         d₂ = v₂ Δt₂

         d₂ = 2 (10-8)

         d₂ = 4 m

The third section.

    d₃ = v₀ + ½ a t²

    d₃ = 2 + ½ 1 (14-10) ²

    d₃ = 10 m

The distance of the fourth section.

       

we look for acceleration

          a₄ = \frac{v-v_o}{\Delta t}  

          a₄ = \frac{0-6}{18-14}  

          a₄ = -1.5 m / s²

     

          d₄ = 6 + ½ (-1.5) (1814) ²

          d₄ = -6 m

The total displacement is;

          d_{total} = 8 + 4 + 10 -6

          d_{total} = 16 m

e) The maximum speed is the highest point in the graph of speed versus time that in the attachment we can see corresponds to

          v = 6 m / s

In conclusion using the characteristics of kinematics we can find the results for the questions about the motion of bodies are:

  a)  we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b)  The acceleration is the first 8 s is:  a = 0.25 m / s²

c) The maximum acceleration is:    a = 1 m / s²

d) The displacement   is:  i) d₁ =  8m,     ii)  d_{total}= 16 m

e) maximum speed  is:      v = 6 m / s

Learn more about kinematics here: brainly.com/question/24783036

3 0
2 years ago
Question 2
Ksivusya [100]

5.77 ×10^1^4 Hz is the green photon's frequency .

The distance between similar points (adjacent crests) in adjacent cycles of a waveform signal that is propagated in space is known as the wavelength. A wave's wavelength is often measured in meters (m), centimeters (cm), or millimeters (mm) (mm). The relationship between frequency and wavelength is inverse.

<h3>Given:</h3>

Wavelength of green light = 520 nm

f = c / λ

where, f = Frequency

            c = Speed of light = 3 × 10^8 m/s

            λ = Wavelength of light

∴ f = c / λ

  f = \frac{3*10^8}{520 * 10^-^9}

    = 5.77 ×10^1^4 Hz

Therefore,  5.77 ×10^1^4 Hz is the green photon's frequency .

Learn more about wavelength here:

brainly.com/question/10728818

#SPJ1

4 0
1 year ago
A small ranger vehicle has a soft, ragtop roof. When the car is at rest, the roof is flat. When the car is cruising at highway s
Nezavi [6.7K]

Answer:

roof bow upwards

Explanation:

The top of the roof of the small ranger vehicle will bow upwards. This is as a result of gas pressure on the soft ragtop roof.

  • As air begins to fill the vehicle, pressure resonates in all direction proportionally.
  • The pressure of the air will be greater than that which the roof can withstand and this forces the roof sky up.
  • It is a common scene when we see roof of ragtop vehicles bowing upwards into the sky.
5 0
3 years ago
What do you think explains the pattern of planet density in the solar system
MrMuchimi

Answer:

If density is greater, the object sinks. Saturn is mainly composed of the lightest two gases known, hydrogen and helium. It is the only planet in our solar system whose density is less than water

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • When a car's velocity is positive and its acceleration is negative, what is happening to the car's motion?
    9·1 answer
  • What is the weight on earth of a girl with a mass of 39 kg? N
    10·1 answer
  • Calculate the electric potential energy in a capacitor that stores 4.0 x 10-10 C
    13·2 answers
  • A 4.2-m-diameter merry-go-round is rotating freely with an angular velocity of 0.79 rad/s . Its total moment of inertia is 1790
    9·1 answer
  • Is the following hypothesis scientific? Why? "Intelligent life exists on other planets
    14·2 answers
  • When do we experience conservation of energy
    7·1 answer
  • Describe different atoms of the same element.
    12·2 answers
  • Sam was investigating a container of water. Water can be a solid, liquid, or gas. At first, Sam said the water molecules were mo
    6·2 answers
  • In which of the following scenarios is the total momentum of the system conserved?
    10·1 answer
  • The triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of 2.00
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!