Answer:
a) d²y/dx² = ½ x + y − ½
b) Relative minimum
Step-by-step explanation:
a) Take the derivative with respect to x.
dy/dx = ½ x + y − 1
d²y/dx² = ½ + dy/dx
d²y/dx² = ½ + (½ x + y − 1)
d²y/dx² = ½ x + y − ½
b) At (0, 1), the first and second derivatives are:
dy/dx = ½ (0) + (1) − 1
dy/dx = 0
d²y/dx² = ½ (0) + (1) − ½
d²y/dx² = ½
The first derivative is 0, and the second derivative is positive (concave up). Therefore, the point is a relative minimum.
Answer:
Step-by-step explanation:


Volume = 
find partial derivatives using product rule

i.e.
Using maximum for partial derivatives, we equate first partial derivative to 0.
y=0 or x+y =6
x=0 or x+4y =12
Simplify to get y =2, x = 4
thus critical points are (4,2) (6,0) (0,3)
Of these D the II derivative test gives
D<0 only for (4,2)
Hence maximum volume is when x=4, y=2, z= 4/3
Max volume is = 4(2)(4/3) = 32/3
Answer:
80% of the values will occurs above 68.24.
Step-by-step explain
thinking this is right but im sorry if its wrong
Answer:
Step-by-step explanation:
The far right side of the triangle is 17 cm, which is the height.
The base would be 34 minus 17 because whole length of the rectangle is 34 and the triangle covers all but 17 of it.
So then you would take 1/2 of 17.
Then multiply it by 17 to get 160.5
Acceleration is the answer