Answer:
x(t) = - 6 cos 2t
Explanation:
Force of spring = - kx
k= spring constant
x= distance traveled by compressing
But force = mass × acceleration
==> Force = m × d²x/dt²
===> md²x/dt² = -kx
==> md²x/dt² + kx=0 ------------------------(1)
Now Again, by Hook's law
Force = -kx
==> 960=-k × 400
==> -k =960 /4 =240 N/m
ignoring -ve sign k= 240 N/m
Put given data in eq (1)
We get
60d²x/dt² + 240x=0
==> d²x/dt² + 4x=0
General solution for this differential eq is;
x(t) = A cos 2t + B sin 2t ------------------------(2)
Now initially
position of mass spring
at time = 0 sec
x (0) = 0 m
initial velocity v= = dx/dt= 6m/s
from (2) we have;
dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)
put t =0 and dx/dt = v(0) = -6 we get;
-2A sin 2(0)+2Bcos(0) =-6
==> 2B = -6
B= -3
Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get
x(t) = - 6 cos 2t
==>
The magnitude (in N) of the force she must exert on the wrench is 150.1 N.
<h3>
Force exerted by the wrench</h3>
The force exerted by the wrench is calculated using torque formula as follows;
torque, τ = F x r x sinθ
where;
- F is the applied force
- r is the perpendicular distance if force applied
F = τ /(r sinθ)
F = (39) / (0.3 sin 60)
F = 150.1 N
Thus, the magnitude (in N) of the force she must exert on the wrench is 150.1 N.
Learn more about torque here: brainly.com/question/14839816
#SPJ1
<h3><u>Answer;</u></h3>
Large mirrors are easier to build than large lenses.
<h3><u>Explanation;</u></h3>
- <em><u>Reflector telescopes have a number of advantages as compared to refracting telescopes and other types of telescopes. </u></em>
- <em><u>Reflector telescopes do not suffer from chromatic aberration because all wavelengths will reflect off the mirror in the same way. The support for the objective mirror is all along the back side so they can be made very large.</u></em>
- Additionally, reflector telescopes are cheaper to make than refractors of the same size. Also since in reflector telescopes light is reflecting off the objective, rather than passing through it, only one side of the reflector telescope's objective needs to be perfect.
Answer:
-0.045 N, they will attract each other
Explanation:
The strength of the electrostatic force exerted on a charge is given by

where
q is the magnitude of the charge
E is the electric field magnitude
In this problem,

(negative because inward)
So the strength of the electrostatic force is

Moreover, the charge will be attracted towards the source of the electric field. In fact, the text says that the electric field points inward: this means that the source charge is negative, so the other charge (which is positive) is attracted towards it.