Answer:
A) a = 5.673 m/s²
The direction will be upwards vertically towards the point where it is suspended.
B) T = 113.2 N
Explanation:
A) We are given;
Weight of bowling ball; W = 71.7 N
Speed; v = 4.6 m/s
Rope length; r = 3.73 m
Now, formula for the centripetal acceleration is;
a = v²/r
Thus; a = 4.6²/3.73
a = 5.673 m/s²
The direction will be upwards vertically towards the point where it is suspended.
B) since weight is 71.7 N, it means that;
Mass = weight/acceleration = 71.7/9.8
Mass(m) = 7.316 kg
Thus,
Centripetal force is;
F_cent = 7.316 × 5.673
F_cent = 41.5 N
Thus, Tension in the rope is;
T = W + F_cent
T = 71.7 + 41.5
T = 113.2 N
The answer using the graphical method and analytical method of vector addition will always be
C. Same
Analytic method means adding vectors (x₁,y₁) and (x₂,y₂) give (x₁+x₂,y₁+y₂)
Example: Addition of (2,3) and (1,1) gives (3,4)
Solving it graphically will also give (3,4)
D
Giddy UP!!!!!!!!!!!!!!!!!!!!!
Answer:
96%
Explanation
Let A the total area of the galaxy, is modeled as a disc:
A = πR^2 = π (25 kpc)^2
And let a be the area that astronomers are able to see:
a = πr^2 = π(5 kpc)^2
The percentage that can be seen is equal to 100 times the ratio of the areas, of the galaxy and the "visible" part:
P = 100 a/A = (5/25)^2 = 100/25 = 4%
Therefore, the percentage of the galaxy not included, i.e. not seen is:
(100-4)% = 96%
<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps