The third law of thermodynamics,the principle of temperature.
This law states that the entropy at 0 is always equel to 0.
This means that it is impossible to cool down a perfect 0 or absolute 0(-273.15 C)
Answer:
DS = 13865.7[J/K]
Explanation:
We can calculate the energy of the rock, like the potential energy relative to the lake level. Which can be calculated by means of the following expression of the potential energy:
![E_{p}=m*g*h\\\\where:\\m = mass = 2000[kg]\\h = elevation = 200 [m]\\g = gravity = 9.81[m/s^2]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%202000%5Bkg%5D%5C%5Ch%20%3D%20elevation%20%3D%20200%20%5Bm%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5Bm%2Fs%5E2%5D)
Therefore:
![E_{p}=2000*9.81*200\\E_{p}=3924000 [J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%3D2000%2A9.81%2A200%5C%5CE_%7Bp%7D%3D3924000%20%5BJ%5D%5C%5C)
This energy is transformed into thermal energy.
we shall remember that isothermal heat transfer processes are internally reversible, so the entropy change of a system during one of these processes can be determined, by the following expression.
![DS=\frac{Q}{T}\\ where:\\DS = entropy change [J/K]\\Q = Heat transfer [J]\\T = temperature [K]](https://tex.z-dn.net/?f=DS%3D%5Cfrac%7BQ%7D%7BT%7D%5C%5C%20where%3A%5C%5CDS%20%3D%20entropy%20change%20%5BJ%2FK%5D%5C%5CQ%20%3D%20Heat%20transfer%20%5BJ%5D%5C%5CT%20%3D%20temperature%20%5BK%5D)
T = 5 + 278 = 283[K]
DS = 3924000 / 283
DS = 13865.7[J/K]
The west constituent of their sequence needs to cancel out 58 mph crosswind. Subsequently a northwest direction is a 45-degree angle up to even with the destination. That is the third point out of the triangle and the right angle is at the destination. The top side is the west constituent of their flight the vertical side is their resultant travel and the hypotenuse is their definite distance flown. Since the 58 mph crosswind was negated by flying northwest, the distance from the beginning to the destination must be the same distance as the west component of their travel. The hypotenuse is square root of twice the side since it has 2 identical sides.
c = sqrt (58^2 + 58^2) = sqrt (6728) = 82.02
Alternative solution:
c = sqrt (2) * 58 = 1.414 * 58 = 82.02
Therefore, they have to fly 82.02 mph
The correct diagram is shown below:
The charges of +2 µC and +3 µC are 4 mm from each other. The diagram below represents the electrical force between the charges. i.e. repulsive force. However the force of repulsion exerted by charge +3 µC on +2<span> µC will be more. The same charges repel each other and opposite charges attract each other.</span>