Answer:
As wind or an ocean current moves, the Earth spins underneath it. ... The Coriolis effect bends the direction of surface currents to the right in the Northern Hemisphere and left in the Southern Hemisphere.
Explanation:
The Coriolis effect causes winds and currents to form circular patterns.
To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
Answer:
Explanation:
Given the following :
Speed (V) = speed of 2.30×10^7 m/s
Acceleration (a) = 1.70×10^13 m/s^2
Using the right hand rule provided by Lorentz law:
B = F / qvSinΘ
Where B = magnitude of the magnetic field
v = speed of the particle
Θ = 90° (perpendicular to the field)
q = charge of the particle
SinΘ = sin90° = 1
Note F = ma
Therefore,
B = ma / qvSinΘ
Mass of proton = 1.67 × 10^-27
Charge = 1.6 × 10^-19 C
B = [(1.67 × 10^-27) × (1.70 × 10^13)] / (1.6 × 10^-19) × (2.30 × 10^7) × 1
B = 2.839 × 10^-14 / 3.68 × 10^-12
B = 0.7715 × 10^-2
B = 7.72 × 10^-3 T
2) Magnetic field will be in the negative y direction according to the right hand thumb rule.
Since Velocity is in the positive z- direction, acceleration in the positive x - direction, then magnetic field must be in the negative y-direction.
Closer than the outer planets, inside the Asteroid Belt between Mars and Jupiter.
You want to draw a free body diagram of the forces on the sled in the horizontal x-direction.
If you visualize the system in an x-y coordinate plane, the force along the x-direction is the angle it makes with the x-axis multiples by the force.
The angle made with the x-axis is cosine of the angle theta.
Please see picture attached.