Answer:
A breakdown of the breaking buffer was first listed with its respective component and their corresponding value; then a table was made for the stock concentrations in which the volume that is being added was determined by using the formula
. It was the addition of these volumes altogether that make up the 0.25 L (i.e 250 mL) with water
Explanation:
Given data includes:
Tris= 10mM
pH = 8.0
NaCl = 150 mM
Imidazole = 300 mM
In order to make 0.25 L solution buffer ; i.e (250 mL); we have the following component.
Stock Concentration Volume to be Final Concentration
added
1 M Tris 2.5 mL 10 mM
5 M NaCl 7.5 mL 150 mM
1 M Imidazole 75 mL 300 mM
. is the formula that is used to determine the corresponding volume that is added for each stock concentration
The stock concentration of Tris ( 1 M ) is as follows:
.

The stock concentration of NaCl (5 M ) is as follows:
.

The stock concentration of Imidazole (1 M ) is as follows:
.

Hence, it is the addition of all the volumes altogether that make up 0.25L (i.e 250 mL) with water.
1 electron has charge =1.602* 10⁻¹⁹ C
1 mole of electrons have 1.602* 10⁻¹⁹*6.02*10²³C = 9.64*10⁴ C/1mol
One ion Co²⁺ takes 2e⁻ to become Co⁰.
1 mol of Co²⁺ ions take 2 mole of e⁻ to become Co⁰, so
0.30 mol Co²⁺ ions take mole of 0.60 mol e⁻ to become Co⁰
9.64*10⁴(C/1mol) *0.60 (mol)≈ 5.8 *10⁴ Coulombs.
Correct answer is C
The DNA is found in the golgi
Answer:
A. K
Step-by-step explanation:
Remember the trends in the Periodic Table:
- Atomic radii <em>decrease</em> from left to right across a Period.
- Atomic radii <em>increase</em> from top to bottom in a Group.
- Ionic radii of metal cations are <em>smaller</em> than those of their atoms.
Thus, the largest atoms are in the lower left corner of the Periodic Table.
The diagram below shows that K is closest to the lower left, so it is the largest atom. It is also larger than any of the cations.