Answer:
It sounds fine, but it may be a bit too long. It's difficult to shorten things like this, but getting more straight to the point would give it that "catchy" feel.
Explanation:
The students have conducted an experiment to check their hypothesis on the thermal conductivity of two metals; Aluminum and steel. The experimental observations have been noted, and the next step based on the scientific procedure is to analyze the data.
Analysis of data suggests that; since the length of wax after 10 min is lower in Al than steel, aluminum is a better thermal conductor.
Ans B) Analyze the data
Answer:
Given: 42 g of N2
Solve for O2 mass that contains the same number of molecules to 42 g of N2.
Solve for the number of moles in 42 g of N2
1 mole of N2 = (14 * 2) g = 28 g so the number of moles in 42 g of N2 is equal to 42 g / 28 g per mole = 1.5 moles
Solve for mass of 1 mole of oxygen
1 mole of O2 = 16 g * 2 = 32 g per mole
Solve for the mass of 1.5 moles of oxygen
mass of 1.5 moles of O2 = 32 g per mole * 1.5 moles
mass of 1.5 moles of O2 = 48 g
So 48 g of O2 contains the same number of molecules as 42 g of N2
When we can get Pka for K2HPO4 =6.86 so we can determine the Ka :
when Pka = - ㏒ Ka
6.86 = -㏒ Ka
∴Ka = 1.38 x 10^-7
by using ICE table:
H2PO4- → H+ + HPO4
initial 0.4 m 0 0
change -X +X +X
Equ (0.4-X) X X
when Ka = [H+][HPO4] / [H2PO4-]
by substitution:
1.38 X 10^-7 = X^2 / (0.4-X) by solving for X
∴X = 2.3x 10^-4
∴[H+] = X = 2.3 x 10^-4
∴PH = -㏒[H+]
= -㏒ (2.3 x 10^-4)
∴PH = 3.6