1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
2 years ago
6

Find the volume of the following figure. Round the answer to the nearest hundredth if necessary.

Mathematics
1 answer:
telo118 [61]2 years ago
8 0

Answer:

48 yd^3.

Step-by-step explanation:

Volume of a pyramid = 1/3  * height * area of the base.

The area of the triangular base = 1/2 * height * base = 1/2*6*8

= 24 yd^2.

So the volume of the figure

= 1/3 * 6 * 24

= 2*24

= 48 yd^3.

You might be interested in
On a cold February morning, the radiator fluid in Stanley’s car is -18 degrees When the engine is running, the temperature goes
Rasek [7]

Remark

This is an arithmetic progression. You have the first and last terms and the difference.

Givens

a = - 18

L = 60

d = 4.5        

Equation

L = a + (n - 1)d

Solve

60 = -18 + (n - 1) * 4.5   Add 18 to both side

60 + 18 = (n - 1) * 4.5      

78 = (n - 1) * 4.5           Divide both sides by 4.5

78/4.5 = n - 1

17.3333 = n - 1             Add 1 to both  sides.

18.3333 = n

Conclusion

It will that 18 1/3 or 18.33333 minutes to get the from -18 to 60 degrees.


3 0
3 years ago
Whats (14-7) multiplied by (40-32) plz gib right answer!
jenyasd209 [6]

Answer:

56

Step-by-step explanation:

(14-7) x (40-32) = 7 x 8

                         = 56

Hope you understood :)

6 0
2 years ago
Read 2 more answers
Solve by factoring: x^4-12x^2= 64
USPshnik [31]
The final solution is all the values that make <span><span><span><span><span>(<span>x+4</span>)</span><span>(<span>x<span>−4</span></span>)</span></span><span>(<span><span>x2</span>+4</span>)</span></span>=0</span><span><span><span><span>x+4</span>⁢<span>x<span>-4</span></span></span>⁢<span><span>x2</span>+4</span></span>=0</span></span> true.<span>x=<span>−4</span>,4,<span>2i</span>,<span><span>−2</span><span>i</span></span></span>
7 0
3 years ago
Read 2 more answers
Rationalise the denominator of:<br>1/(√3 + √5 - √2)​
Paul [167]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} }

can be re-arranged as

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}   -   \sqrt{2}   +  \sqrt{5} }

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }  \times \dfrac{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ {( \sqrt{3}  -  \sqrt{2} )}^{2}  -  {( \sqrt{5}) }^{2} }

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{3 + 2 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{5 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{ - ( -  \sqrt{3} +  \sqrt{2}  + \sqrt{5}) }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}  \times \dfrac{ \sqrt{6} }{ \sqrt{6} }

\rm \:  =  \: \dfrac{-  \sqrt{18} +  \sqrt{12}  + \sqrt{30}}{2  \times 6}

\rm \:  =  \: \dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}

\rm \:  =  \: \dfrac{-  3\sqrt{2} + 2 \sqrt{3}   + \sqrt{30}}{12}

Hence,

\boxed{\tt{ \rm \dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} } =\dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>More Identities to </u><u>know:</u></h3>

\purple{\boxed{\tt{  {(x  -  y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{3} =  {x}^{3} + 3xy(x + y) +  {y}^{3}}}}

\purple{\boxed{\tt{  {(x - y)}^{3} =  {x}^{3} - 3xy(x  -  y) -  {y}^{3}}}}

\pink{\boxed{\tt{  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}}

\pink{\boxed{\tt{  {(x + y)}^{2}  -  {(x - y)}^{2} = 4xy}}}

6 0
3 years ago
Solve for x. 2x^2-4x=0<br> A. <br> 0, -4<br> B. <br> 0, -2<br> C. <br> 0, 2<br> D. <br> 2, 4
madam [21]

Step-by-step explanation:

2x²-4x=0

2x²=4x

2x=4

x=2

option C

7 0
3 years ago
Read 2 more answers
Other questions:
  • !!!!!!!HELP ASAP!!!!!!!!!
    9·1 answer
  • Help please I don’t get this
    14·2 answers
  • Use the table above to graph the function y = 2x - 2 with the domain (1,2,3).
    7·1 answer
  • 8x-15 =3x how to do this
    6·2 answers
  • Write the equation of a line that is parallel to y=0.6x + 3 and that passes through the point (-3,-5)
    12·1 answer
  • If second, sixth and eighteenth term of an AP are the consecutive term of GP. Find the commom ratio
    14·1 answer
  • 2^1/2 x 3^2/3 in simplest form hurry help im on my test!!!!!!! Will mark as brainliest!
    9·2 answers
  • GIVE BRAINLIEST. Select the correct answer.
    9·2 answers
  • A tree initially measured 38 1/2 feet tall. Over the next 5 1/2 years, it grew to a final height of 49 1/2 feet. During those 5
    5·2 answers
  • Given the following graph of a point on the polar plane, name another set of coordinates that could also represent this point us
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!