Answer:
Ka = 0.1815
Explanation:
Chromic acid
pH = ?
Concentration = 0.078 M
Ka = ?
HCl
conc. = 0.059M
pH = -log(H+)
pH = -log(0.059) = 1.23
pH of chromic acid = 1.23
Step 1 - Set up Initial, Change, Equilibrium table;
H2CrO4 ⇄ H+ + HCrO4−
Initial - 0.078M 0 0
Change : -x +x +x
Equilibrium : 0.078-x x x
Step 2- Write Ka as Ratio of Conjugate Base to Acid
The dissociation constant Ka is [H+] [HCrO4−] / [H2CrO4].
Step 3 - Plug in Values from the Table
Ka = x * x / 0.078-x
Step 4 - Note that x is Related to pH and Calculate Ka
[H+] = 10^-pH.
Since x = [H+] and you know the pH of the solution,
you can write x = 10^-1.23.
It is now possible to find a numerical value for Ka.
Ka = (10^-1.23))^2 / (0.078 - 10^-1.23) = 0.00347 / 0.0191156
Ka = 0.1815
Https://us-static.z-dn.net/files/d15/c111c5e1b23135c61adec7b554629964.jpg
I believe the answer is the third option. Hope this helps! Please tell me if I am wrong or if there was an error in my answer... also sorry this answer is late.
The bowl has more volume, the bearing has more volume. The mass is bigger for the bearing because it is heavier than the bowl. It is made of metal and the weight of it is greater than the bowl.(the body shape).
I don't think so. No way that I know anyway. It it could be done then the need for more coal to be mined would have stopped hundreds of years ago. Once coal is burned, it forms water and carbon dioxide (essentially) with some sulfur oxides.
How do you put that back together again. It's a little like humpty dumpty.