Supercooling<span>, a state where liquids do not solidify even below their normal freezing point. Means sometimes we have liquid water below 0 degree C.</span>
The energy of the carbide released is 7262.5MJ.
<h3>What is the energy?</h3>
We know that the reaction between calcium oxide and carbon occurs in accordance with the reaction;
. The reaction is seen to produce 464.8kJ of energy per mole of carbide produced.
Number of moles of
produced = 1000 * 10^3 g/64 g/mol
= 15625 moles of calcium carbide
If 1 mole of
transfers 464.8 * 10^3 J
15625 moles of calcium carbide transfers 15625 moles * 464.8 * 10^3 J/ 1 mol
= 7262.5MJ
Learn more about reaction enthalpy:brainly.com/question/1657608
#SPJ1
Answer:Gases and solids , Solids and liquids
Explanation:
A solid has a definite shape while liquids and gases take the shape of the container in which they are found .
Hence when a substance changes it's state from gas to solid or solid to liquid, it's shape automatically changes as explained above.
This problem is providing us with a statement in which we need to figure out the word fitting in the blank. At the end, after analyzing the information, the word turns out to be colligative as show below:
<h3>Colligative properties.</h3>
In chemistry, colligative properties of solutions account for the behavior of a solution with respect to the pure solvent, to which a solute is added.
Among them, we have boiling point elevation, freezing point depression, vapor pressure lowering and osmotic pressure, which are all affected by the concentration of the solute but not by the identity of the solute.
In such a way, we conclude that the correct word that fits in the blank is colligative as shown below:
"Colligative properties depend on the concentration of a solute in a solution but not on the identity of the solute."
Learn more about colligative properties: brainly.com/question/10323760
Answer:
Molecules along the surface of a liquid behave differently than those in the bulk liquid.
Cohesive forces attract the molecules of the liquid to one another.
Water forming a droplet as it falls from a faucet is a primary example of surface tension.
Explanation:
Surface tension is the force that stretches the liquid surface. This force acts normal to the surface. It is the downward force that acts on the surface of the liquids which is due to the cohesive forces of the liquids.
The water molecules are bonded by a strong hydrogen bond force which is between hydrogen atom and the electronegative oxygen atom. At the surface the water molecules are attracted strongly by other water molecules which lies below the surface and are stretched at the surface. Thus the water molecules at the surface acts differently than in the bulk liquid.
Mercury have a strong cohesive force than the water and have a higher surface tension force than the water.
Surface water acquires minimum surface area, hence acquiring spherical shape of water.