<span>adopt ecological conservation practices </span>
the electric force decreases because the distance has an indirect relationship to the force
Explanation:
The electric force between two objects is given by

where
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is the distance between the two objects
As we can see from the formula, the magnitude of the force is inversely proportional to the square of the distance: so, when the distance between the object increases, the magnitude of the force decreases.
To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by

Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,

Where,

For our case we have that there is neither initial position nor initial velocity, then

With our values we have
, rearranging to find a,



Therefore the final velocity would be



Therefore the final velocity is 81.14m/s
Answer:
wen I was in the car toing home from school after a bad day n si si I have crazzyyy
Answer:

Explanation:
The torque applied by a force can be calculated as

where
F is the magnitude of the force
d is the length of the arm
is the angle between the direction of the force and the arm
In this problem, we have
F = 15 N
d = 2.0 m

Substituting into the equation, we find
