1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
3 years ago
10

An object travels 20 m in 4 s heading south. What is it’s velocity?

Physics
2 answers:
vodka [1.7K]3 years ago
6 0

Answer:

5 miles a second

Explanation:

20 divided by 4

hope it helps and for brainliest :)

Bogdan [553]3 years ago
4 0

Answer is provided in the image attached.

You might be interested in
A string along which waves can travel is 4.36 m long and has a mass of 222 g. The tension in the string is 60.0 N. What must be
lora16 [44]

Answer:

frequency is 195.467 Hz

Explanation:

given data

length L = 4.36 m

mass m = 222 g = 0.222 kg

tension T = 60 N

amplitude A = 6.43 mm = 6.43 × 10^{-3} m

power P = 54 W

to find out

frequency f

solution

first we find here density of string that is

density ( μ )= m/L ................1

μ = 0.222 / 4.36  

density μ is 0.050 kg/m

and speed of travelling wave

speed v = √(T/μ)       ...............2

speed v = √(60/0.050)

speed v = 34.64 m/s

and we find wavelength by power that is

power = μ×A²×ω²×v  /  2     ....................3

here ω is wavelength put value

54 = ( 0.050 ×(6.43 × 10^{-3})²×ω²× 34.64 )   /  2

0.050 ×(6.43 × 10^{-3})²×ω²× 34.64 = 108

ω² = 108 / 7.160  × 10^{-5}

ω = 1228.16 rad/s

so frequency will be

frequency = ω / 2π

frequency = 1228.16 / 2π

frequency is 195.467 Hz

7 0
3 years ago
A pendulum has a length of 2 m and a 30 kg mass hanging on the end. What is the period of the
anastassius [24]

Answer:

T = 2.83701481512 seconds

Explanation:

Hi!

The formula that you will want to use to solve this question is:

T = 2\pi *\sqrt{\frac{L}{g}  }

T--> period

L --> length of the pendulum

g --> acceleration due to gravity (9.8m/s^2)

since we know that the mass of the bob at the end of the pendulum does not affect the period of the pendulum, we can go ahead and ignore that bit of information (unless, of course, the weight causes the pendulum to stretch)

so now we can plug in our given info into the formula above and solve!

T = 2*pi * sqrt(2/9.8)

T = 2.83701481512 seconds

*Note*

- I used 3.14 to pi, if you need to use a different value for pi (a longer version, etc) your answer will be slightly different

I hope this helped!

7 0
3 years ago
Lunar missions have revealed that the moon has:
myrzilka [38]
That the moon has soil within its shadowy craters rich and useful material
5 0
3 years ago
Hooke’s law describes the linear relationship between stress and strain through Young’s modulus. Given two materials under the s
stiks02 [169]

Answer:

The material with higher modulus will stretch less than

The material with lower modulus

Explanation:

A material with a higher modulus is stiffer and has better resistance to deformation. The modulus is defined as the force per unit area required to produce a deformation or in other words the ratio of stress to strain.

E= stress/stain

Hooks law states that provided the elastic limit is not exceeded the extension e of a spring is directly proportional to the load or force attached

F=ke

Where k is the constant which gives the measure of the spring under tension

3 0
3 years ago
Read 2 more answers
An electric field of 1.27 kV/m and a magnetic field of 0.490 T act on a moving electron to produce no net force. If the fields a
lesantik [10]

Answer:

v = 2591.83 m/s

Explanation:

Given that,

The electric field is 1.27 kV/m and the magnetic field is 0.49 T. We need to find the electron's speed if the fields are perpendicular to each other. The magnetic force is balanced by the electric force such that,

qE=qvB\\\\v=\dfrac{E}{B}\\\\v=\dfrac{1.27\times 10^3}{0.49}\\\\v=2591.83\ m/s

So, the speed of the electron is 2591.83 m/s.

8 0
3 years ago
Other questions:
  • Phyics !!! Cannon ball question
    7·1 answer
  • The operating potential difference of a light bulb is 120 V. The power rating of the bulb is 70 W. (a) Find the current in the b
    15·1 answer
  • Why is it important for a muscle to be attached to a fixed origin at one end and a moving insertion at the other? Discuss how th
    14·1 answer
  • If the index of refraction of a lens is 1.5, how fast does light travel in the lens?
    14·2 answers
  • Answer all of these questions and you will get the brain list answer
    6·2 answers
  • Answer this please.____
    13·1 answer
  • Way back in the ­­­­­­­­­­­­_____________, there lived a man named Isaac Newton who really loved physics.
    8·1 answer
  • Which of the following equations represents an acid base reaction?
    12·2 answers
  • Which example is correctly matched with its type of friction?
    8·1 answer
  • 2. Determine the units of the quantity described by each of the following
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!