Gravitational potential energy=mass*gravitational acceleration*height
Kinetic energy = 0.5*mass*velocity²
So with the given data
K.E 0.5*1*x²=12.5 v²=12.5÷(0.5*1)
v=√12.5÷(0.5*1) v=5
GPE mass*gravitational acceleration*height
1*9.81*h=98
h=98÷(9.81*1)
h= 9.98 m
Answer:
0.045 J
Explanation:
The work done on a charge moving through a potential difference is given by

where
W is the work done
q is the charge
is the potential difference
In this problem, we have
q = 0.0050 C is the charge
is the potential difference
Using the formula, we find the work done:

Answer:
1. heat engine ~~ •a machine that converts the internal energy of a fuel into mechanical energy.
2. heat pump ~~ •an appliance that extracts heat energy from one source and deposits it
elsewhere.
3. Boiler ~~ •a heating appliance that uses heat energy released from fossil fuels to warm water for use in radiant or
convection heating systems.
4. Thermostat ~~ •an appliance that controls the maintenance temperature of a heating
system
X -> Y + 2Z
So there are 2 different particles. 1 mol of X produces
1 mol of Y and 2 moles of Z.
Kps = [Y] [Z]^2
We will call “s” (solubility) the molarity of X
So the molarity of Y+ is also “s” (same number)
And the molarity of Z is “2s” (twice as much)
Kps = s*(2s)^2 = s*4s^2=4s^3
If s is multiplied by 2:
Kps = 4*(2s)^3=4*2^3*s^3=4*8*s^3
So Kps is multiplied by 8.