1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Llana [10]
3 years ago
14

What energy powers the star throughout its life?

Physics
1 answer:
aleksley [76]3 years ago
3 0
<span>It is called Nuclear fusion. Stars are controlled by atomic combination in their centers, generally changing over hydrogen into helium. The generation of new components by means of atomic responses is called nucleosynthesis. A star's mass figures out what another kind of nucleosynthesis happens in its center.</span>
You might be interested in
A stone is dropped from a cliff and falls 9.44 meters. What is the speed of the stone when it reaches the ground?
Lunna [17]

Answer:

option A

Explanation:

given,                                              

height of the drop of stone = 9.44 m

speed of the stone = ?                          

As the stone is dropped the energy of the stone will be conserved.

using conservation of energy.            

Potential energy = Kinetic energy    

m g h = \dfrac{1}{2} m v^2  

     v = \sqrt{2gh}                  

     v = \sqrt{2\times 9.8 \times 9.44}

     v = \sqrt{185.024}              

            v = 13.60 m/s                      

Hence, the correct answer is option A

3 0
3 years ago
You set out to design a car that uses the energy stored in a flywheel consisting of a uniform 101-kg cylinder of radius r that h
Ket [755]
Ok, assuming "mj" in the question is Megajoules MJ) you need a total amount of rotational kinetic energy in the fly wheel at the beginning of the trip that equals
(2.4e6 J/km)x(300 km)=7.2e8 J
The expression for rotational kinetic energy is

E = (1/2)Iω²  

where I is the moment of inertia of the fly wheel and ω is the angular velocity.  
So this comes down to finding the value of I that gives the required energy.  We know the mass is 101kg.  The formula for a solid cylinder's moment of inertia is

 I = (1/2)mR²

We want (1/2)Iω² = 7.2e8 J and we know ω is limited to 470 revs/sec.  However, ω must be in radians per second so multiply it by 2π to get 
ω = 2953.1 rad/s
Now let's use this to solve the energy equation, E = (1/2)Iω²,  for I:
I = 2(7.2e8 J)/(2953.1 rad/s)² = 165.12 kg·m²

Now find the radius R,

 165.12 kg·m² = (1/2)(101)R²,
√(2·165/101) = 1.807m

R = 1.807m
8 0
3 years ago
A person drops a brick from the top of a building. The height of the building is 400 m and the mass of the brick is 2.00 kg. Wh
DaniilM [7]
-- It takes the brick 8.9 seconds to reach the ground. 

-- At the instant of the "splat", it's falling at 89 m/s.

-- The mass doesn't matter. If not for air resistance, every object
    would fall at the same rate.  The answer is the same for a feather,
    a rubber chicken, a brick, or a school bus.
5 0
3 years ago
To understand the experiment that led to the discovery of the photoelectric effect.
andrew11 [14]

Answer:

A) Emin = eV

B) Vo = (E_light - Φ) ÷ e

Explanation:

A)

Energy of electron is the product of electron charge and the applied potential difference.

The energy of an electron in this electric field with potential difference V will be eV. Since this is the least energy that the electron must reach to break out, then the minimum energy required by this electron will be;

Emin = eV

B)

The maximum stopping potential energy is eVo,

The energy of the electron due to the light is E_light.

If the minimum energy electron must posses is Φ, then the minimum energy electron must have to reach the detectors will be equal to the energy of the light minus the maximum stopping potential energy

Φ = E_light - eVo

Therefore,

eVo = E_light - Φ

Vo = (E_light - Φ) ÷ e

6 0
3 years ago
You are traveling on an interstate highway at the posted speed limit of 70 mph when you see that the traffic in front of you has
vovikov84 [41]

Answer:8.75 s,

136.89 m

Explanation:

Given

Initial velocity=70 mph\approx 31.29 m/s

velocity after 5 s is 30 mph\approx 13.41 m/s

Therefore acceleration during these 5 s

a=\frac{v-u}{t}

a=\frac{13.41-31.29}{5}=-3.576 m/s^2

therefore time required to stop

v=u+at

here v=final velocity =0 m/s

initial velocity =31.29 m/s

0=31.29-3.576\times t

t=\frac{31.29}{3.576}=8.75 s

(b)total distance traveled before stoppage

v^2-u^2=2as

0^2-31.29^2=2\times (-3.576)\cdot s

s=136.89 m

3 0
3 years ago
Other questions:
  • What part of the brain is referred to as the seat to consciousness?
    10·1 answer
  • When a flying bug hits a moving train no effect is observed on the train because
    13·1 answer
  • The division of earths history into similar units makes up the
    14·1 answer
  • I need C,D,E,F,H please ​
    12·1 answer
  • You are driving your car and the traffic light ahead turns red.You apply the breaks for 3s and the velocity of the car decreases
    7·1 answer
  • A swimmer can swim at a velocity v in still water. She swims upstream a distance d against the current, which has a velocity u.
    10·1 answer
  • 5. The measurement of the amount of friction a surface will generate is called the ___
    14·1 answer
  • A scientist in Northern California is studying the tree rings of a very old redwood tree. He notices that the oldest tree rings
    11·2 answers
  • Helpppppppp pleaseeeee!!
    12·1 answer
  • A scientist is measuring various properties of a sound wave. She measures the value 340 m/s. Which of the following wave charact
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!