Answer:
a

b

c

Explanation:
From the question we are told that
The mass of the bag is 
The normal force experienced is 
The maximum acceleration of the bag is 
Generally this normal force experience by the bag is mathematically represented as

=> 
=> 
=> ![\theta = cos^{-1}[0.9183]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20cos%5E%7B-1%7D%5B0.9183%5D)
=> 
Generally for the bag not to slip , it means that the frictional force is equal to the sliding force

Hence
is mathematically represented as
While
is mathematically represented as

So
=>
=> 
Generally from the workdone equation we have that

Here
is the work done by friction which is mathematically represented as
Here s is the distance covered by the bag
is zero given that velocity at rest is zero
and

so

=> 
substituting 2.55 m/s for v_i and 0.350 for \mu_k we have that

=> 
Answer:
Explanation:
Area of electrodes, A = 2 cm x 2 cm = 4 cm²
Separation between electrodes, d = 1 mm
Voltage, V = 9 V
(a)
Let C is the capacitance between the electrodes


C = 3.54 x 10^-12 F
Let q be the charge on each of the electrode
q = C x V
q = 3.54 x 10^-12 x 9 = 3.2 x 10^-11 C
(b)
As, the battery is disconnected the charge on the electrodes remains same.
(c)
As the battery is connected the voltage is same.
capacitance is change.
As the distance is doubled, the capacitance becomes half and the charge is also halved. q' = q/2 = 1.6 x 10^-11 C
'Ampere' is the unit of current. That's the rate at which
electrons travel in the circuit ... the number of electrons
every second. If you wanted the actual amount or number
of electrons, you'd need to know the length of time too.
It doesn't matter whether we're talking about a parallel or
series circuit.
Answer:
Curves around objects
Explanation:
Diffraction is a property of light described by bending of light around an object. This ability of light to bend around edges has facilitated optical effects of light where there is interference of light waves. Other properties of light are: reflection, refraction, polarization, scattering of light, and interference of light.
Answer:
F_n = 5.65E-11 N
d = 1.20682E-31 m
Explanation:
F = 3.8E-09 N
where
m = Mass of electron = 9.109E−31 kilograms
G = Gravitational constant = 6.67E-11 m³/kgs²
x = Distance between them

For 

Dividing the above equations we get

F_n = 5.65E-11 N

d = 1.20682E-31 m