Increase to the visible part
Answer:
Final velocity of the first person is 3.43m/s and that of the second person is 0.0242m/s
Explanation:
Let the momentum of the first person, the ball second person be Ma, Mb and Mc.
From the principle of the conservation of momentum, sum of the momentum before collision is equal to the sum of the momentum after collision.
Ma1 + Mb1 = Ma2 + Mb2.
The ball and the first person are both moving together with a common velocity 3.45m/s.
Let the velocity of the first person be v1
Therefore
67.5×3.45+ 0.041×3.45= 67.5v1 + 0.041×34
233.02 = 1.39+ 67.5v1
67.5v1 = 233.02 - 1.39 = 231.61
v1 = 231.61 / 67.5
v1 = 3.43m/s
The second person and the ball move together with a common velocity after catching the ball.
For the second person and the ball let their final common velocity be v
Mb2 + Mc2 = Mb3 + Mc3
0.041 × 34 + 57.5 ×0 = (57.5 + 0.041)×v
57.541v = 1.39
v = 1.39 /57.541
v = 0.0242m/s
Answer:
The temperature of the core raises by
every second.
Explanation:
Since the average specific heat of the reactor core is 0.3349 kJ/kgC
It means that we require 0.3349 kJ of heat to raise the temperature of 1 kg of core material by 1 degree Celsius
Thus reactor core whose mass is
will require

energy to raise it's temperature by 1 degree Celsius in 1 second
Hence by the concept of proportionately we can infer 150 MW of power will increase the temperature by
Answer
Work done will be
and it will be positive
Explanation:
We have given charge 
We have to find work done in moving the charge from 15 volt to 8 volt
Let 
So potential difference 
We know that work done
, here Q is charge and V is potential difference
So work done 
It will be positive work done because work is done in moving charge from higher potential to lower potential
<h3>I hope it is helpful for you ...</h3>