1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Llana [10]
2 years ago
15

Even though the Sun has a greater mass than Earth, the Moon orbits Earth because it's ___________________ to Earth than to the S

un.
Physics
2 answers:
a_sh-v [17]2 years ago
6 0

Answer:

even though the sun has a greater mass

Pani-rosa [81]2 years ago
3 0
<span>Even though the Sun has a greater mass than Earth, the Moon orbits Earth because it's closer to the Earth than to the Sun. Because of this proximity between the Earth and the Moon, the Earth has a stronger gravitational pull than the Sun does. Furthermore, the Earth's mass is 81 times that of the Moon, and so at this proximity, it is more than able to overpower what pull the Sun exerts on the Moon.</span>
You might be interested in
A cart starts from rest and accelerates uniformly at 4.0 m/s2 for 5.0 s. It next maintains the velocity it has reached for 10 s.
wlad13 [49]

Answer:

12m/s

Explanation:

v_f=v_o+at

Let's call the velocity that the car maintains for 10 seconds v_f_1, and the final velocity v_f_2.

v_f_1=0+(4)(5)=20m/s \\\\v_f_2=20+(-2)(4)=12m/s

Hope this helps!

5 0
3 years ago
When a falling object reaches terminal velocity, the net force acting on it is
dexar [7]
Pretty sure that it is 0.
3 0
3 years ago
A 700 kg car makes a turn going at 30 m/s with radius of
Gnoma [55]

Answer:5250 N

Explanation: ig:iihoop.vince

5 0
3 years ago
Starting with the definition 1.00 in. = 2.54 cm, find the number of kilometers in 8.00 mi .
velikii [3]
Use Factor-Label Method:

8miles 63360 inches
---------- X --------------------- X
1 1 mile

2.54cm 1 meter
X ------------ X ---------------- X
1 inch 100 cm

1 km
----------------- = 12.87 km
1000meters


8 miles = 12.87 km
8 0
3 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
Other questions:
  • Plz tell me the answer to this problem!!
    15·1 answer
  • A wall, acted upon by a force of 20 N, does not move. The work done on the wall in this process is
    11·1 answer
  • Push-and-pull factors contribute to _____.<br> economics<br> politics<br> migration<br> education
    15·1 answer
  • How much energy is needed to heat and melt 3.0 kg of copper initially at 83°C?
    8·1 answer
  • How does velocity change in a circular motion​
    8·1 answer
  • Study the distance-time graph, showing the distances that eight different things cover in 120 seconds or less. The letters below
    11·1 answer
  • Please help! Will give a lot of points
    7·1 answer
  • It is the disturbance or oscillation that travels through space and matter, accompanied by a transfer of energy.
    6·1 answer
  • If it takes Jupiter 13 years to orbit the Sun. How long (in years) will it take Jupiter to go once around the sky as viewed from
    10·1 answer
  • Question 9 of 10
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!