To solve this exercise it is necessary to take into account the concepts related to Tensile Strength and Shear Strenght.
In Materials Mechanics, generally the bodies under certain loads are subject to both Tensile and shear strenghts.
By definition we know that the tensile strength is defined as

Where,
Tensile strength
F = Tensile Force
A = Cross-sectional Area
In the other hand we have that the shear strength is defined as

where,
Shear strength
Shear Force
Parallel Area
PART A) Replacing with our values in the equation of tensile strenght, then

Resolving for F,

PART B) We need here to apply the shear strength equation, then



In such a way that the material is more resistant to tensile strength than shear force.
<u>We are Given:</u>
Mass of the block (m) = 500 grams or 0.5 Kg
Initial velocity of the block (u) = 0 m/s
Distance travelled by the block (s) = 8 m
Time taken to cover 8 m (t)= 2 seconds
Acceleration of the block (a) = a m/s²
<u>Solving for the acceleration:</u>
From the seconds equation of motion:
s = ut + 1/2* (at²)
<em>replacing the variables</em>
8 = (0)(2) + 1/2(a)(2)²
8 = 2a
a = 4 m/s²
Therefore, the acceleration of the block is 4 m/s²
Answer:

Explanation:
From the question we are told that
Weight of fireman 
Pole distance 
Final speed is 
Generally the equation for velocity is mathematically represented as

Therefore Acceleration a
Generally the equation for Frictional force
is mathematically given as



Therefore

Answer:
$4.2
Explanation:
Given data
Power= 700W
time= 10 hours
Cost per kilowatt hours is cents $0.20
Let us find the number of hours in a month
=24*30
=720 hours
Energ= power*time
Energy= 700/1000*30
Energy= 7*3
Enery= 21 kwh
1 kwh= 0.2
21kwh= x
cross multiply
x=21*0.2
x= $4.2
Answer:
0.006<357<700.003<6010<9256.0<9520.00