Answer:
okķkkkkkkkkkkkkkkkkkkkkk.I don't know the answer. GIVE THANKS
<u>Answer:</u> The final equation has hydroxide ions which indicate that the reaction has occurred in a basic medium.
<u>Explanation:</u>
Redox reaction is defined as the reaction in which oxidation and reduction take place simultaneously.
The oxidation reaction is defined as the reaction in which a chemical species loses electrons in a chemical reaction. It occurs when the oxidation number of a species increases.
A reduction reaction is defined as the reaction in which a chemical species gains electrons in a chemical reaction. It occurs when the oxidation number of a species decreases.
The given redox reaction follows:

To balance the given redox reaction in basic medium, there are few steps to be followed:
- Writing the given oxidation and reduction half-reactions for the given equation with the correct number of electrons
Oxidation half-reaction: 
Reduction half-reaction: 
- Multiply each half-reaction by the correct number in order to balance charges for the two half-reactions
Oxidation half-reaction:
( × 3)
Reduction half-reaction:
( × 2)
The half-reactions now become:
Oxidation half-reaction: 
Reduction half-reaction: 
- Add the equations and simplify to get a balanced equation
Overall redox reaction: 
As we can see that in the overall redox reaction, hydroxide ions are released in the solution. Thus, making it a basic solution
According to Dalton's Atomic Theory, the <em>Law of Definite Proportion is applied when a compound is always made up by a fixed fraction of its individual elements.</em> This is manifested by the balancing of the reaction.
The reaction for this problem is:
H₂ + Cl₂ → 2 HCl
1 mol of H₂ is needed for every 1 mole of Cl₂. Assuming these are ideal gases, the moles is equal to the volume. So, if equal volumes of the reactants are available, they will produce twice the given volumes of HCl.
Salt dissolving in a glass of water, using electricity to break down water into hydrogen and oxygen, rust forming on an iron fence and gas burning on a stove.