Answer:
Explanation:
Initial burette reading = 1.81 mL
final burette reading = 39.7 mL
volume of NaOH used = 39.7 - 1.81 = 37.89 mL .
37.89 mL of .1029 M NaOH is used to neutralise triprotic acid
No of moles contained by 37.89 mL of .1029 M NaOH
= .03789 x .1029 moles
= 3.89 x 10⁻³ moles
Since acid is triprotic , its equivalent weight = molecular weight / 3
No of moles of triprotic acid = 3.89 x 10⁻³ / 3
= 1.30 x 10⁻³ moles .
Because they are coming from the ground and always safe
Answer:
By balancing the chemical equation
Explanation:
The Law of Conservation of Matter states that matter cannot be destroyed nor created.
That is, you must have the same amount of matter before and after a reaction.
Atoms are made of matter, so you must have the same number of each type of atom in the reactants as in the products. You must balance the equation.
Consider the reaction
2H₂ + O₂ ⟶ 2H₂O
You must have 2s in front of H₂ and H₂O to balance the atoms.
They give you four atoms of H and two atoms of O on each side of the arrow.
Answer:
If the volume of the container is decreased by a factor of 2 the pressure is is increased by the same factor to 1664 torr.
Explanation:
Here we have Boyle's law which states that, at constant temperature, the volume of a given mass of gas is inversely proportional to its pressure
V ∝ 1/P or V₁·P₁ = V₂·P₂
Where:
V₁ = Initial volume
V₂ = Final volume = V₁/2
P₁ = Initial pressure = 832 torr
P₂ = Final pressure = Required
From V₁·P₁ = V₂·P₂ we have,
P₂ = V₁·P₁/V₂ = V₁·P₁/(V₁/2)
P₂ = 2·V₁·P₁/V₁ = 2·P₁ = 2× 832 torr = 1664 torr