Answer:
A voltaic cell that uses the oxidation of a fuel to produce electricity
Explanation:
A fuel cell is a voltaic cell that converts the chemical energy of a fuel and an oxidizing agent into electricity.
A. is wrong. This definition is so broad that it could include a candle in a cup.
C is wrong. The batteries in flashlights and cell phones are not fuel cells.
Answer:
PCl₅ because a subscript indicates 5 chlorine atoms.
Explanation:
As the name suggests, phosphorous pentachloride contains 5 chlorine atoms as penta means five and phosphorous means P atoms.
£ is not a molecule. It is a currency. That is pounds sterling, used in the U.K.
1 mountains
2 small volcanoes
3 I'm pretty sure its faults
<u>Answer:</u> The rate law expression is
and value of 'k' is 
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[NO]^a[O_2]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5Ea%5BO_2%5D%5Eb)
where,
a = order with respect to nitrogen monoxide
b = order with respect to oxygen
- <u>Expression for rate law for first observation:</u>
....(1)
- <u>Expression for rate law for second observation:</u>
....(2)
- <u>Expression for rate law for third observation:</u>
....(3)
Dividing 1 from 2, we get:

Dividing 1 from 3, we get:

Thus, the rate law becomes:
![\text{Rate}=k[NO]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BO_2%5D%5E1)
Now, calculating the value of 'k' by using any expression.
Putting values in equation 1, we get:
![8.55\times 10^{-3}=k[0.030]^2[0.0055]^1\\\\k=1.727\times 10^3M^{-2}s^{-1}](https://tex.z-dn.net/?f=8.55%5Ctimes%2010%5E%7B-3%7D%3Dk%5B0.030%5D%5E2%5B0.0055%5D%5E1%5C%5C%5C%5Ck%3D1.727%5Ctimes%2010%5E3M%5E%7B-2%7Ds%5E%7B-1%7D)
Hence, the rate law expression is
and value of 'k' is 