The relationship between voltage, current, and resistance is described by Ohm's law. The equation, i = v/r, tells us that the current, i, flowing through a circuit is directly proportional to the voltage, v, and inversely proportional to the resistance, r.
Answer:
a. The sheets move toward each other and the gap narrows.
Explanation:
This exercise is related to fluid mechanics, when blowing between the two sheets, we can apply Bernoulli's equation, where the index 2 is the space between the two sheets
P₁ + ½ ρ g v₁² + ρ g y₁ = P₂ + ½ ρ g v₂² + ρ g y²
if the two leaves are at the same height
y₁ = y₂
whereby
P₁ + ½ ρ g v₁² = P₂ + ½ ρ v₂²
for the air velocity between the leaves let us use the continuity equation
A₁ v₁ = A₂ v₂
the area between the leaves is less than the external area, so the air speed must increase. If we use this in Bernoulli's equation, increasing the speed 2 (between the leaves) to maintain equality the pressure must decrease.
If the pressure decreases, the blades should move closer
When resisting the answers, the correct one is a
Answer:
Explanation:
y_1 = (3 mm) sin(x - 3t)
comparing it with standard wave equation
y = A sin( ωt-kx )
we see
ω = -3 , k = -1
velocity = ω / k
= 3
y_2 = (6 mm) sin(2x - t)
we see
ω = -1 , k = -2
velocity = ω / k
= .5
y_3 = (1 mm) sin(4x - t)
we see
ω = -1 , k = -4
velocity = ω / k
= .25
y_4 = (2 mm) sin(x - 2t)
we see
ω = -2 , k = -1
velocity = ω / k
= 2
So greatest velocity to lowest velocity
y_1 = (3 mm) sin(x - 3t) , y_4 = (2 mm) sin(x - 2t) ,y_2 = (6 mm) sin(2x - t) , y_3 = (1 mm) sin(4x - t)
b )
Given the mass per unit length of wire the same , velocity is proportional to
√ T , where T is tension
so in respect of tension in the wire same order will exist for highest to lowest tension .