Answer:
The acceleration of the ball is 666.67 m/s²
Explanation:
It is given that,
Mass of the baseball, m = 0.15 kg
Applied force to it, F = 100 N
We need to find the acceleration of the ball. It can be calculated using Newton's second law of motion as :
F = ma
So, the acceleration of the ball is 666.67 m/s². Hence, this is the required solution.
C wavelength due to the fact the a frequency does not have an x but a y
Answer:
you can simply answer p1v1=p2v2 p2 = p1v1÷ p2 then inter what given in the formula you get it pl=1.20x 105pa vl= 0.40m3 v2=0.025m3
Answer: Gravitational force and drag force
Explanation:
For a snowboard jumper in the air, two forces would be acting. One in the downward direction- the gravitational pull and second in the opposite direction to the motion, the drag force due to air. If the snowboard jumper jumps in the air at a certain angle with the horizontal. The forces are written as the sum of vertical and horizontal components. Hence, for the modeling the motion, gravitational force and drag force are important,
If we have the angle and magnitude of a vector A we can find its Cartesian components using the following formula
Where | A | is the magnitude of the vector and is the angle that it forms with the x axis in the opposite direction to the hands of the clock.
In this problem we know the value of Ax and Ay and we need the angle .
Vector A is in the 4th quadrant
So:
So:
So:
= -47.28 ° +360° = 313 °
= 313 °
Option 4.