1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
3 years ago
14

Suppose you are measuring double‑slit interference patterns using an optics kit that contains the following options that you can

mix and match: a red laser or a green laser; a slit width of 0.04 0.04 or 0.08 mm; 0.08 mm; a slit separation of 0.25 0.25 or 0.50 mm . 0.50 mm. Estimate the minimum distance L L you can place a screen from the double slit that will give you an interference pattern on the screen that you can accurately measure using an ordinary 30 cm ( 12 in ) 30 cm(12 in) ruler.
Physics
1 answer:
svetlana [45]3 years ago
4 0

Answer:

3.6 m

Explanation:

\lambda_R = 650 \ nm\\\\\lambda_R = 650*10^{-9} m\\\\L \ should \ be \ minimum \\\\i.e \  0.25 \ mm\\\\= 0.25 *10^{-3} m

\lambda_R = 700 \ nm\\\\\lambda_R = 700*10^{-9} m\\\\

Also

\beta = 1 \ mm \ fringe \  width

D_{min} = \frac{\beta d}{\lambda}\\\\D_{min} = \frac{10^{-3}*0.25*10^{-3}}{700*10^{-9}}\\\\D_{min} = 3.57 \\D_{min} =  3.6 m

Therefore, the minimum distance L  you can place a screen from the double slit that will give you an interference pattern on the screen that you can accurately measure using an ordinary 30 cm (12 in) ruler. = 3.6 m

You might be interested in
You walk 20 meters north, then 5 meters south. what is your displacement?
Svetllana [295]
The answer is C. 15 meters North

Displacement is the distance and direction from the origin. If you move 20 meters North, your displacement is 20 meters North. If you move 5 meters South, you are basically moving back the way you came by 5 meters, which means you are now 15 meters North.

I hope this helped! :)

3 0
3 years ago
An inductor of 299 mH with a resistance of 51 Ω is connected to a power supply with a maximum voltage of 227 V and a frequency o
kramer

Answer:

The answer is 1.1A

Explanation:

See the attached file

6 0
3 years ago
On the way to the moon, the Apollo astronauts reach a point where the Moon’s gravitational pull is stronger than that of Earth’s
Drupady [299]

Answer:

rm = 38280860.6[m]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

6 0
3 years ago
Bradley drops a rock in a well. It falls for 12 seconds. How deep is the well?
erik [133]
It’s 12 seconds long
3 0
3 years ago
Which astronomer supported the belief that earth was at the center fo the universe?
MissTica
B. Ptolemy believed that the earth was the center of the universe
4 0
3 years ago
Read 2 more answers
Other questions:
  • 90 percent if amphibians are...? (Choose all that apply) a. Frogs b. Toads c. Newts d. Salamanders e. Caecillans
    14·1 answer
  • List of priceless your bodies from largest to smallest in terms of their distance from earth
    12·1 answer
  • Which one is not a derived unit?<br><br>1. Hertz<br>2. mol<br>3. Watt<br>4. Newton​
    5·2 answers
  • The combustion of ethanol, C2H5OH(l), in oxygen to form carbon dioxide gas and water vapor is shown by which balanced chemical e
    15·2 answers
  • I really need some with help with this anyone who can help with acceleration and velocity pleasee and thank you
    8·1 answer
  • Right hand rule exercise
    9·1 answer
  • Part 2 "Tug-of-War"
    7·1 answer
  • Conservation of linear momentum
    8·1 answer
  • 4) A basketball is launched at a velocity of 25 m/s in a direction making an angle of 50° upward with the
    7·1 answer
  • We are in an elevator going down at constant speed. All these forces are acting on us, except:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!