Answer:
67
Explanation:
- The atomic number (Z) of an atom is equal to the number of protons in the nucleus
- The mass number (A) of an atom is equal to the sum of protons and neutrons in the nucleus
Therefore, calling p the number of protons and n the number of neutrons, for element X we have:
Z = p = 23
A = p + n = 90
Substituting p=23 into the second equation, we find the number of neutrons:
n = 90 - p = 90 - 23 = 67
(a) The lowest frequency (called fundamental frequency) of a wire stretched under a tension T is given by

where
L is the wire length
T is the tension
m is the wire mass
In our problem, L=10.9 m, m=55.8 g=0.0558 kg and T=253 N, therefore the fundamental frequency of the wire is

b) The frequency of the nth-harmonic for a standing wave in a wire is given by

where n is the order of the harmonic and f1 is the fundamental frequency. If we use n=2, we find the second lowest frequency of the wire:

c) Similarly, the third lowest frequency (third harmonic) is given by
The efficiency of a heat engine is given by the expression 
The efficiency of a heat engine is the ratio of the work done by the engine to the heat given as the input to the engine.

The heat engine absorbs Q h from the hot reservoir , performs a work <em>W</em> on the absorbed heat and rejects Qc to the cold reservoir.
Therefore, the work done is given by,

Thus the efficiency is given by, 