According to Balance chemical equation,
N₂ + 3 H₂ → 2 NH₃
1 mole of Nitrogen reacts with 3 moles of Hydrogen to produce 2 mole of Ammonia.
It is known that i mole of any gas at standard temperature and pressure occupies 22.4 L of Volume. So, we can also say,
22.4 L (1 × 22.4) of Nitrogen gas (in question it is taken in excess) reacts with 67.2 L (22.4 × 3) of Hydrogen gas to produce 44.8 L (22.4 × 2) of Ammonia.
Result:
44.8 L is the correct answer.
Answer: The final temperature is 
Explanation:

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of lead = 50 g
= mass of water = 75 g
= final temperature = ?
= temperature of lead = 
= temperature of water = 
= specific heat of lead = 
= specific heat of water= 
Now put all the given values in equation (1), we get
![50\times 0.11\times (T_{final}-373)=-[75\times 1.0\times (T_{final}-273)]](https://tex.z-dn.net/?f=50%5Ctimes%200.11%5Ctimes%20%28T_%7Bfinal%7D-373%29%3D-%5B75%5Ctimes%201.0%5Ctimes%20%28T_%7Bfinal%7D-273%29%5D)

Therefore, the final temperature of the mixture will be 279.8 K.
Small crystals
<span>white, brown </span>
<span>hard as in solid at room temp </span>
<span>sweet </span>
Explanation:
the correct empirical formula for C6H12O6 is CH2O...
hope it will help....