<u>5.6400 </u>is the mass of silver bromide that precipitates when 2.96 g of iron(iii) bromide is combined with excess silver nitrate.
<h3>
Difference between silver bromide and iron(iii) bromide</h3>
- Silver bromide (AgBr) is a soft, pale-yellow, water-insoluble salt well known (along with other silver halides) for its unusual sensitivity to light. This property has allowed silver halides to become the basis of modern photographic materials. AgBr is widely used in photographic films and is believed by some to have been used for making the Shroud of Turin. The salt can be found naturally as the mineral bromargyrite.
- Iron(III) bromide is the chemical compound with the formula FeBr3. Also known as ferric bromide, this red-brown odourless compound is used as a Lewis acid catalyst in the halogenation of aromatic compounds. It dissolves in water to give acidic solutions.
Learn more about Silver bromide
brainly.com/question/16958040
#SPJ4
iron has two oxidation states +2 and + 3 there are two possible equations for the redox reaction - comparatively speaking, ferrous compounds are easier to hydrolyze than their ferric counterparts.
<h3>What is Redox reaction ?</h3>
Compared to ferric oxide, ferrous oxide is more basic in makeup. Comparatively speaking, ferrous compounds are more ionic than their ferric counterparts. Due to the fact that ferrous compounds are more ionic than their corresponding ferric ones, they are less volatile.
The greater positive charge of ferric compounds, however, makes them easier to hydrolyze than the comparable ferrous ones.
The quantity, kind, and distances of the iron atom's neighbors all contribute to their stability. Because each Fe atom is only weakly linked together by three electrons, which makes them susceptible to being dragged away by strong electronegative neighbors like oxygen, both types of ions are stable.
Please click here to learn more about oxidative states please click here : brainly.com/question/27060392
#SPJ9
Mendeleev organized his periodic table in order of increasing atomic number in 1869.
<u>Answer:</u> The mass of sulfur dioxide gas at STP for given amount is 16.8 g
<u>Explanation:</u>
At STP conditions:
22.4 L of volume is occupied by 1 mole of a gas.
So, 5.9 L of volume will be occupied by = 
Now, to calculate the mass of a substance, we use the equation:

Moles of sulfur dioxide gas = 0.263 mol
Molar mass of sulfur dioxide gas = 64 g/mol
Putting values in above equation, we get:

Hence, the mass of sulfur dioxide gas at STP for given amount is 16.8 g
The water and heathfshiccu