Answer:
7.5 moles
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3Cu + 2H3PO4 —> Cu3(PO4)2 + 3H2
From the balanced equation above,
3 moles of Cu reacted with 2 moles of H3PO4.
Therefore, Xmol of Cu will react with 5 moles of H3PO4 i.e
Xmol of Cu = (3 x 5)/2
Xmol of Cu = 7.5 moles
Therefore, 7.5 moles of Cu are needed to react with 5 moles of H3PO4.
Thank you for posting your question here brainly. Based on the problem mentioned above the largest mass that water molecule could have using other isotopes is <span>24 amu. Below is the solution, I hope the answers helps.
</span><span>T2_18O = 24</span>
PbSO₄ partially dissociates in water. the balanced equation is;
PbSO₄(s) ⇄ Pb²⁺(aq) + SO₄²⁻(aq)
Initial - -
Change -X +X +X
Equilibrium X X
Ksp = [Pb²⁺(aq)] [SO₄²⁻(aq)]
1.6 x 10⁻⁸ = X * X
1.6 x 10⁻⁸ = X²
X = 1.3 x 10⁻⁴ M
Hence the Pb²⁺ concentration in underground water is 1.3 x 10⁻⁴ M.
[Pb²⁺] = 1.3 x 10⁻⁴ M.
= 1.3 x 10⁻⁴ mol / L x 207 g / mol
= 26.91 ppm