<u>Answer:</u> The freezing point of solution is -0.454°C
<u>Explanation:</u>
Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.
The equation used to calculate depression in freezing point follows:

To calculate the depression in freezing point, we use the equation:

Or,

where,
Freezing point of pure solution = 0°C
i = Vant hoff factor = 2
= molal freezing point elevation constant = 1.86°C/m
= Given mass of solute (KCl) = 5.0 g
= Molar mass of solute (KCl) = 74.55 g/mol
= Mass of solvent (water) = 550.0 g
Putting values in above equation, we get:

Hence, the freezing point of solution is -0.454°C
Molar mass Li2CO3 = 73.89 g/mol
Molar mass Li = 6.94g/mol Li = 6.94*2 = 13.88g
% LI = 13.88/73.89*100 = 18.78% perfectly correct.
Answer:
Explanation:
SODIUM ATOM;
SODIUM ATOM IS NEUTRAL
SODIUM ION;
IT IS A CHARGED SPECIE WITH A CHARGE OF +1
SODIUM ATOM:
THE NUMBER OF PROTONS AND ELECTRONS ARE SAME ie:11
SODIUM ION:
NUMBER OF PROTONS AND ELECTRONS ARE NOT SAME ie. ELETRON: 10, PROTONS:11
HOPE IT WILL HELP:)
<span>Stating that collisions of gas particles are perfectly elastic means that no kinetic energy is lost when the gases collide, and no kinetic energy is gained. Some of the properties of gases include volume, pressure, thermal conductivity, pressure, and viscosity.</span>
Answer:
E = 26.4 ×10⁻²⁷ j
Explanation:
Given data:
Energy of energy =?
Frequency = 4×10⁷ Hz
Solution:
Formula:
E = hf
E = hf
E = 6.6 ×10⁻³⁴ m²Kg/s . 4×10⁷ Hz
Hz = s⁻¹
j = m²Kg/s
²
E = 26.4 ×10⁻²⁷ j.