The answer is cadmium its got 48 electrons which is y its number 48 on the period table
Answer:
vp jokhimon vf dpp gl fl vk hggjuvg7vvohohohohojj
Answer : The value of
for the reaction is -959.1 kJ
Explanation :
The given balanced chemical reaction is,

First we have to calculate the enthalpy of reaction
.

![\Delta H^o=[n_{H_2O}\times \Delta H_f^0_{(H_2O)}+n_{SO_2}\times \Delta H_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta H_f^0_{(H_2S)}+n_{O_2}\times \Delta H_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28O_2%29%7D%5D)
where,
= enthalpy of reaction = ?
n = number of moles
= standard enthalpy of formation
Now put all the given values in this expression, we get:
![\Delta H^o=[2mole\times (-242kJ/mol)+2mole\times (-296.8kJ/mol)}]-[2mole\times (-21kJ/mol)+3mole\times (0kJ/mol)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5B2mole%5Ctimes%20%28-242kJ%2Fmol%29%2B2mole%5Ctimes%20%28-296.8kJ%2Fmol%29%7D%5D-%5B2mole%5Ctimes%20%28-21kJ%2Fmol%29%2B3mole%5Ctimes%20%280kJ%2Fmol%29%5D)

conversion used : (1 kJ = 1000 J)
Now we have to calculate the entropy of reaction
.

![\Delta S^o=[n_{H_2O}\times \Delta S_f^0_{(H_2O)}+n_{SO_2}\times \Delta S_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta S_f^0_{(H_2S)}+n_{O_2}\times \Delta S_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28O_2%29%7D%5D)
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of formation
Now put all the given values in this expression, we get:
![\Delta S^o=[2mole\times (189J/K.mol)+2mole\times (248J/K.mol)}]-[2mole\times (206J/K.mol)+3mole\times (205J/K.mol)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B2mole%5Ctimes%20%28189J%2FK.mol%29%2B2mole%5Ctimes%20%28248J%2FK.mol%29%7D%5D-%5B2mole%5Ctimes%20%28206J%2FK.mol%29%2B3mole%5Ctimes%20%28205J%2FK.mol%29%5D)

Now we have to calculate the Gibbs free energy of reaction
.
As we know that,

At room temperature, the temperature is 500 K.


Therefore, the value of
for the reaction is -959.1 kJ
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible to set up the following energy equation for both objects 1 and 2:

In terms of mass, specific heat and temperature change is:

Now, solve for the final temperature, as follows:

Then, plug in the masses, specific heat and temperatures to obtain:

Yet, the values do not seem to have been given correctly in the problem, so it'll be convenient for you to recheck them.
Regards!