The freezing point of a solution containing 5. 0 grams of KCl and 550.0 grams of water is - 0.45°C
Using the equation,
Δ
= i
m
where:
Δ
= change in freezing point (unknown)
i = Van't Hoff factor
= freezing point depression constant
m = molal concentration of the solution
Molality is expressed as the number of moles of the solute per kilogram of the solvent.
Molal concentration is as follows;
MM KCl = 74.55 g/mol
molal concentration =
molal concentration = 0.1219m
Now, putting in the values to the equtaion Δ
= i
m we get,
Δ
= 2 × 1.86 × 0.1219
Δ
= 0.4536°C
So, Δ
of solution is,
Δ
= 0.00°C - 0.45°C
Δ
= - 0.45°C
Therefore,freezing point of a solution containing 5. 0 grams of KCl and 550.0 grams of water is - 0.45°C
Learn more about freezing point here;
brainly.com/question/3121416
#SPJ4
Answer:
During cellular respiration animal cells combine oxygen with food molecules to release energy to live and function. Remember that cellular respiration produces carbon dioxide as a waste product. Animals use energy to grow, reproduce, and to function. They release the carbon dioxide into the air as a waste product
Explanation:
The location of the negative charges is evenly distributed throughout the entire atom.
J. J. Tomson concluded that atoms are divisible and that the corpuscles are their building blocks.
Atoms are made up of smaller particles.
J. J. Thomson discovered the electron ( the negative charges of the atom) in 1897.
His "plum pudding" model (1904) suggested: the electrons are embedded in the positive charge and evenly distributed throughout the entire atom.
With this model, he abandoned his earlier hypothesis that the atom was composed of immaterial vortices.
Later, Rutherford demonstrate that J.J Thompson's Plum Pudding model was not accurate.
More info about Thomson’s plum pudding model: brainly.com/question/6319700
#SPJ4
Answer:
think I did this before and its V