We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.
To find out the number of stars that we will need to search to find a signal, we need to use the following formula:
- total of stars/civilizations
- 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)
This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.
Note: This question is incomplete; here is the complete question.
On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.
Assuming 100 civilizations existed.
Learn more about stars in: brainly.com/question/2166533
Answer:
300J
Explanation:
Work done = Force x the distance travelled in the direction of the force
=300 x 1
=300J
You should stop<span> before </span>crossing railroad<span> tracks: Whenever a </span>crossing<span> is not ... Follow </span>no closer than<span> 10 feet behind the large truck. </span>
Answer:
v = 2 cm/s
Explanation:
The equation of the wave is
y(x,t) = (2.0cm)*cos(2π*x−4π*t)
Where,
x is measured in cm
t in s
A more general formula for this equation would be
y(x,t) = A*cos(k*x−ω*t)
Where,
A = amplitude.
k = the wavenumber
ω = the angular frequency
The velocity of the wave corresponds to
v = ω/k
v = 4π / 2π = 2 cm/s
v = 2 cm/s
Answer:
Once we place a positive test at a point close to the sphere, we find that an electrostatic force is applied to the outside of the sphere. Therefore, at any point around the sphere, the electric field vector is radially outward.